Draw or Cut two similar squares with sides
units long.
Draw or cut four pairs of similar right triangles with side lengths as indicated in the diagram.
Now arrange the similar triangles at the corners of the squares such that the sides
of one similar triangle plus the side
of a second similar triangle coincides with the length of the square.
We do another arrangement of the similar triangles. This time arrange another 4 similar triangles in the opposite corners, such that each pair forms a square.
Now comparing the two different arrangements we got two different areas that are equal.
The area of the uncovered squares in the first arrangement is 
The area of the two uncovered squares in the second arrangement is 
Equating the two areas gives the Pythagoras Theorem

Note that
is the hypotenuse,
and
are two shorter sides of the similar right triangles.
The domain of any graph depends on the vertex as well as the asymptotes. You can easily tell if the domain is all real numbers by looking at the graph and seeing that it goes clearly from -infinity to +infinity. If there is an asymptote that blocks it, then it will not be all real numbers.
Which statement is not always true?(1) The product of two irrational numbers is irrational.
(2) The product of two rational numbers is rational.
(3) The sum of two rational numbers is rational.
(4) The sum of a rational number and an irrational number is irrational.
The statement that is not always true is the <span>sum of two rational numbers is rational. The answer is number 3.</span>
Answer:
-2
Step-by-step explanation:
Determining the limit from a graph edge
I hope this helps if you need any other help just message me and i will answer
True
True
False