The phase shift is the value of the angle when the variable
in the angle is zero.
The angle in the sin function in this equation is (pi X + 2).
When the variable 'X' is zero, the angle is 2 .
So the phase shift of this sin function is 2 (of whatever
the unit of the angle is ... 2 degrees, 2 radians, etc.)
Answer:
Step-by-step explanation:
// Build on Thu Oct 20 21:06:21 CEST 2011 for language "en"
myHostname = window.location.hostname;
var myTLD = "." + myHostname.substring(myHostname.indexOf("wupload") + "wupload.".length).split(".")[0];
function afterLoad() {
return
}
ieFixForFileSelectionOnChangeEventTimer = null;
function ieFixForFileSelectionOnChangeEvent(a) {
$("#siteName").toggle();
if ($("#inputFileSelection").val() == "") {
ieFixForFileSelectionOnChangeEventTimer = setTimeout("ieFixForFileSelectionOnChangeEvent()", 200)
} else {
$("body")[0].focus()
}
}
function urlencode(a) {
return escape(a.toString().replace(/%/g, "%25").replace(/\+/g, "%2B")).replace(/%25/g, "%")
}
See attached picture for solution:
The law of cosines is used for calculating one side of the triangle if the angle opposite to that side is given as well as the other sides. For this problem, we are given angle B. Therefore, the correct answer among the choices given is option 1 where a is equal to 5 and c is equal to 3.