<h2>Answer: The more precisely you know the position of a particle, the less well you can know the momentum of the particle
</h2>
The Heisenberg uncertainty principle was enunciated in 1927. It postulates that the fact that each particle has a wave associated with it, imposes restrictions on the ability to determine <u>its position and speed at the same time. </u>
In other words:
<em>It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle.</em>
<h2>So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity. </h2><h2 />
In fact, even with the most precise devices, the uncertainty in the measurement continues to exist. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Therefore the correct option is C.
The buoyant force on any object acts in the direction opposite to the force of gravity. <em>(A)</em>
You should trust the primary source more.
This is because the primary source is make its conclusion from direct observation, while the secondary source is possibly making reference to another secondary source or to another primary.
The primary source should be trusted more because it is from direct observation.
The formula is=1/2(m x v^2)
so = 1/2*(0.05)*(310)^2
ans is =2402.5 joules