Answer:
400 J
Explanation:
Work is done when a force that is applied to an object moves that object.
The work is calculated by multiplying the force by the amount of movement of an object
W = F * d
here the man has to work against the gravitational field. (against his weight)
F =100 N
Work done = F * d
= 100 * 4
= 400 J
Answer:
Not necessarily
Explanation:
Rain needs some mechanism such as instability of vertical air movement.
The conservation of the momentum allows to find the result of how the astronaut can return to the spacecraft is:
- Throwing the thruster away from the ship.
The momentum is defined as the product of the mass and the velocity of the body, for isolated systems the momentum is conserved. If we define the system as consisting of the astronaut and the evo propellant, this system is isolated and the internal forces become zero. Let's find the moment in two moments.
Initial instant. Astronaut and thrust together.
p₀ = 0
Final moment. The astronaut now the thruster in the opposite direction of the ship.
= m v + M v '
where m is propellant mass and M the astronaut mass.
As the moment is preserved.
0 = m v + M v ’
v ’=
We can see that the astronaut's speed is in the opposite direction to the propeller, that is, in the direction of the ship.
The magnitude of the velocity is given by the relationship between the masses.
In conclusion, using the conservation of the momentun we can find the result of how the astronaut can return to the ship is:
- Throwing the thruster away from the ship.
Learn more here: brainly.com/question/14798485
F=mass times acceleration so multiple 50 by 1.5 and u get 75