The area of a rectangle is A=LW, the area of a square is A=S^2.
W=S-2 and L=2S-3
And we are told that the areas of each figure are the same.
S^2=LW, using L and W found above we have:
S^2=(2S-3)(S-2) perform indicated multiplication on right side
S^2=2S^2-4S-3S+6 combine like terms on right side
S^2=2S^2-7S+6 subtract S^2 from both sides
S^2-7S+6=0 factor:
S^2-S-6S+6=0
S(S-1)-6(S-1)=0
(S-6)(S-1)=0, since W=S-2, and W>0, S>2 so:
S=6 is the only valid value for S. Now we can find the dimensions of the rectangle...
W=S-2 and L=2S-3 given that S=6 in
W=4 in and L=9 in
So the width of the rectangle is 4 inches and the length of the rectangle is 9 inches.
Answer:
The new apartment you are about to sign a one-year lease on is $1,500 per month. The lease
requires you to put up first month's rent and a $750 security deposit to move in. In addition,
Answer:
139.888 $
Step-by-step explanation:
Data :
15 ft = 24.98$
So
1 yard = 3 ft
15ft / 3 ft = 5 yard
So
5 yard = 24.98$
28 yd / 5yd = 5.6
5.6 × 24.98 = 139.888
Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:
On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:
From this form,
you can determine the coordinates of the vertex to be (1, 3)