F = ma
We have mass = 20kg
And we need to solve for acceleration
So acceleration is change in velocity over time, in this case we have one velocity and we can assume the man started from rest so
12.3 / 0.9 = a
a = 13.6667
Now we can plug that into F = ma
F = (20)(13.6667)
F = 273.334
Rounding
F = 273.33
Now he is traveling east so we need a force towards the rest, or in the opposite direction to stop his motion.
If we assume east is the positive direction then we need a force of
-273.33 N to stop the man or 273.33 towards the west.
<span>The relationship between the electric field strength at a point and its distance from the source charge is inversely proportional. As the electric field strength increases the charges are more closer to each other which means the distance between the is smaller. It is seen by the equation:
E = </span><span>(1/4*pi*epsilon0) (Q/r^2)</span>
Answer:
m = 2,776.95 kg
Explanation:
given,
radius = 1.5 m
mass = 1.19 x 10⁴ Kg
constant speed, v = 1.4 m/s
Resistive force = 1105 N
density of sea water = 1.03 x 10³ kg/m³
Volume of vessel,


v = 14.14 m³
Upthrust,
U = ρ g V
U = 1030 x 9.8 x 14.14
U = 142729.16 N
Since the vessel is moving at a constant speed, the resultant force on it should equal zero.
downward acting forces = upward acting forces
Mg = U + resistive force
M x 9.8 = (142729.16+1105)
M=14676.95 Kg
Mass of water,
m = M - mass of vessel
m = 14676.95 Kg- 11,900 kg
m = 2,776.95 kg
The particle model of light explains how light can
travel through empty space without a medium.
This type of models experiments with and studies particles of light so as to determine how it can move through various empty locations without having to rely on some sort of a medium to help it do so. It studies light at the atomic level, as opposed to other models.