1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
5

Galileo discovered that which planet undergoes phases as viewed from earth?

Physics
1 answer:
balu736 [363]3 years ago
3 0
<h2>Answer: Venus</h2>

Galileo was the first to use the telescope to observe the heavens, mainly observing the Moon, the Sun with its sunspots, Jupiter with its moons and Venus (in the early 1600s).

In the case of Venus, he observed that it presented phases (such as those of the moon) together with a variation in size; observations that are only compatible with the fact that Venus rotates around the Sun and not around Earth.

This is because Venus presented its smaller size when it is in full phase and the largest size when it is in the new one, when it is between the Sun and the Earth.

These images along with other discoveries were presented to the Catholic Church (which supported the <u>geocentric theory</u> for that time) as a proof that completely refutes Ptolemy's geocentric system and affirms <u>Copernicus' heliocentric theory.</u>

You might be interested in
Friction in machines is commonly reduced by using what?
Dominik [7]
I am not sure if this is what your looking for but most machines use oil 
8 0
3 years ago
Imagine how mercury might be different if it had the same mass as earth. Explain.
maxonik [38]
I believe if it were heavier with more mass, then the sun would pull it in and there would be no mercury. It might also be hotter.
4 0
3 years ago
Granite is uplifted by the movement of tectonic plates. It will most likely become _____. igneous rock sedimentary rock metamorp
pashok25 [27]

Answer:

The answer would be Igneous rock

Explanation:

3 0
2 years ago
A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
ozzi

Answer:

Explanation:

From the given information:

We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then

The volume charge distribution relates to the radial direction at r = R

∴

\rho (r) \  \alpha  \  \delta (r -R)

\rho (r) = k \  \delta (r -R) \ \  at \ \  (r = R)

\rho (r) = 0\ \ since \ r< R  \ \ or  \ \ r>R---- (1)

To find the constant k, we  examine the total charge Q which is:

Q = \int \rho (r) \ dV = \int \sigma \times dA

Q = \int \rho (r) \ dV = \sigma \times4 \pi R^2

∴

\int ^{2 \pi}_{0} \int ^{\pi}_{0} \int ^{R}_{0} \rho (r) r^2sin \theta  \ dr \ d\theta \ d\phi = \sigma \times 4 \pi R^2

\int^{2 \pi}_{0} d \phi* \int ^{\pi}_{0} \ sin \theta d \theta * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

(2 \pi)(2) * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

Thus;

k * 4 \pi  \int ^{R}_{0}  \delta (r -R) * r^2dr = \sigma \times  R^2

k * \int ^{R}_{0}  \delta (r -R)  r^2dr = \sigma \times  R^2

k * R^2= \sigma \times  R^2

k  =   R^2 --- (2)

Hence, from equation (1), if k = \sigma

\mathbf{\rho (r) = \delta* \delta (r -R)  \ \  at   \ \  (r=R)}

\mathbf{\rho (r) =0 \ \  at   \ \  rR}

To verify the units:

\mathbf{\rho (r) =\sigma \ *  \ \delta (r-R)}

↓         ↓            ↓

c/m³    c/m³  ×   1/m            

Thus, the units are verified.

The integrated charge Q

Q = \int \rho (r) \ dV \\ \\ Q = \int ^{2 \ \pi}_{0} \int ^{\pi}_{0} \int ^R_0 \rho (r) \ \ r^2 \ \  sin \theta  \ dr \ d\theta \  d \phi  \\ \\  Q = \int ^{2 \pi}_{0} \  d \phi  \int ^{\pi}_{0} \ sin \theta  \int ^R_{0} \rho (r) r^2 \ dr

Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  \int ^R_0  * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  *R^2    since  ( \int ^{xo}_{0} (x -x_o) f(x) \ dx = f(x_o) )

\mathbf{Q = 4 \pi R^2  \sigma  }

6 0
3 years ago
A laser of wavelength 720 nm illuminates a double slit where the separation between the slits is 0.22 mm. Fringes are seen on a
kumpel [21]

Answer:

The appropriate solution is "2.78 mm".

Explanation:

Given:

\lambda = 720 \ nm

or,

  = 720\times 10^{-9} \ m

D=0.85 \ m

d = 0.22 \ mm

or,

  =0.22 \times 10^{-3} \ m

As we know,

Fringe width is:

⇒ \beta=\frac{\lambda D}{d}

hence,

Separation between second and third bright fringes will be:

⇒ \theta=\beta=\frac{\lambda D}{d}

       =\frac{720\times 10^{-9}\times 0.85}{0.22\times 10^{-3}}

       =2.78\times 10^{-3} \ m

or,

       =2.78 \ mm

8 0
2 years ago
Other questions:
  • The power dissipated in each of two resistors is the same. The current across resistor A is triple that across resistor B. If th
    10·1 answer
  • How do energy transformations occur in a hydroelectric plant?
    9·2 answers
  • According to Newton’s Third Law of Motion, how are action and reaction forces related. Provide a full explanation with an exampl
    13·1 answer
  • A 140-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope a
    6·1 answer
  • The safe load for a certain horizontal beam used to hold up part of a building varies inversely as the length between the suppor
    12·1 answer
  • In the nucleus of an atom, two protons are separated by a distance of 10^-13 m. What is the Coloumb force between them? The char
    13·1 answer
  • How are element and compound are alike and different?
    6·1 answer
  • Suppose you are in a moving car and the motor stops running. You step on the brakes and slow the car to half speed. If you relea
    5·1 answer
  • ) The rate of submergence is the total change in the elevation of the pier (two m) divided by the total amount of time involved
    15·1 answer
  • 1 What happens to the direction of the force on a current-carrying wire if the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!