This makes frequency lower as well as the pitch we hear.
Answer:
The distance is
Explanation:
From the question we are told that
The period of the moon 
The mass of the planet is 
Generally the period of the moon is mathematically represented as

Here G is the gravitational constant with value

=> 
=> 
=> 
=>
j
=>
Answer:
t = 1.659s
Explanation:
We can use the kinematics equations to solve this questions:
v = u + at

where v = Final Velocity, u = initial velocity, a = acceleration, t = time, s = displacement
a) Given information from the question,
u =
(Convert km/h to m/s first)
a = 
s = 35m
Now we can substitute these values into the 2nd kinematics equation to find v, final velocity.

b) Now we have the final velocity, we can substitute the values into the first kinematics equation to find t , the time taken.
v = u + at
22.761 = 19.444 + 2t
2t = 22.761 - 19.444
t =
t = 1.659s
Answer:
the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer
Explanation:
Given that;
final velocity v = 0
initial velocity u = 15m/s
time taken t = 4 s
acceleration a = ?
from the equation of motion
v = u + at
we substitute
0 = 15 + a × 4
acceleration a = -15/4 = - 3.75 m/s²
the negative sign tells us that its a deacceleration so the sign can be ignored.
Deacceleration due to friction a = μ × g
we substitute
3.75 = μ × 9.8
μ = 3.75 / 9.8 = 0.3826 ≈ 0.38
Therefore the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer