1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
14

PICKING BRIANLIEST FOR THE CORRECT ANSWER!!!!!!!!!!!

Mathematics
2 answers:
irga5000 [103]3 years ago
7 0
Im pretty sure you put the wrong picture. The slope isn't negative and there is no point O,A, or B.
Veseljchak [2.6K]3 years ago
4 0
Where is O, A and B?
You might be interested in
A store called Surfmania sells a $170 surfboard for 30% off. Another store, Coolwaves, sells the same surfboard but for $150, bu
Marizza181 [45]

Answer:

no se467/'%7&!&?!&$-!---;!8

6 0
3 years ago
Let φ(x, y) = arctan (y/x) .
Alexandra [31]

Answer:

a) \large F(x,y)=(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2})

b) \large \mathbb{R}^2-\{(0,0)\}

c) the points of the form (x, -x) for x≠0

Step-by-step explanation:

a)

If φ(x, y) = arctan (y/x), the vector field F = ∇φ would be

\large F(x,y)=(\frac{\partial \phi}{\partial x},\frac{\partial \phi}{\partial y})

On one hand we have,

\large \frac{\partial \phi}{\partial x}=\frac{\partial arctan(y/x)}{\partial x}=\frac{-y/x^2}{1+(y/x)^2}=-\frac{y/x^2}{1+y^2/x^2}=\\\\=-\frac{y/x^2}{(x^2+y^2)/x^2}=-\frac{y}{x^2+y^2}

On the other hand,

\large \frac{\partial \phi}{\partial y}=\frac{\partial arctan(y/x)}{\partial y}=\frac{1/x}{1+(y/x)^2}=\frac{1/x}{1+y^2/x^2}=\\\\=\frac{1/x}{(x^2+y^2)/x^2}=\frac{x}{x^2+y^2}

So

\large F(x,y)=(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2})

b)

The domain of definition of F is  

\large \mathbb{R}^2-\{(0,0)\}

i.e., all the plane X-Y except the (0,0)

c)

Here we want to find all the points such that

\large (-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2})=(k,k)

where k is a real number other than 0.

But this means

\large -\frac{y}{x^2+y^2}=\frac{x}{x^2+y^2}\Rightarrow y=-x

So, all the points in the line y = -x except (0,0) are parallel to the vector field F, that is, the points (x, -x) with x≠ 0

8 0
3 years ago
3. Given ABCD ≅ FGHJ and mC = 9x - 7, mH = 5x + 13, find the value of x and the measures of angle C and angle H. Show all work
Bas_tet [7]
Since congruence and similarity for polygons is posted in a specific order, we know that angle A=angle F, side A=side F, die B=side G, and so on. Therefore, we have that angle C=angle H = 9x-7=5x+13. Subtracting 5x from both sides to separate the x using the subtraction property of equality, we get 4x-7=13. Next, we can add 7 to both sides to get 4x=20, and divide both sides by 4 to isolate the x and get x=5. Plugging that into angle C or angle H, we get that 9x-7=9*5-7=45-7=38=5*5+13.

Feel free to ask further questions!
5 0
3 years ago
Need help on these !! 13 and 14! Please!!
katen-ka-za [31]

Question # 13

Answer:

The required equation for the given function is <em>y = 4sin(x/2+2π/3) -2 , as shown attached graph diagram.</em>

<em>Step-by-step explanation: </em>

As the general sine function is given by

y=asin(bx+c)+d.......[A]

  • amplitude = a
  • period = 2π ÷ b
  • Phase shift = -c ÷ b
  • Vertical shift = d

As in the question,  

  • amplitude = a = 4
  • period = 4π
  • phase shift = -4π/3
  • Vertical shift = d = -2

As  

period = 2π ÷ b  

b = 2π/period

b = 2π/4π ∵ period = 4π

b = 1/2  

Also

Phase shift = -c/b

-4π/3 = -c/b ∵ phase shift = -4π/3

4π/3 = c/b  

c = b × 4π/3  

c = 1/2 × 4π/3  

c = 4π/6  

c = 2π/3

So, putting Amplitude ⇒ a = 4, Vertical shift ⇒ d = -2, b = 1/2 ,  

and c = 2π/3 in Equation [A] would bring us the required equation for the given function.

y=asin(bx+c)+d

y = 4sin(x/2+2π/3)+(-2)

y = 4sin(x/2+2π/3) -2            

<em>Note: The graph is also shown in attached diagram.</em>

                                             Question # 14

<em>Answer:</em>

The required equation for the given function is y = cot(x+π/3)+2, as shown in attached graph diagram.

<em>Step-by-step explanation: </em>

As the general cotangent function is given by

y=acot(bx+c)+d.......[A]

  • amplitude = a
  • period = π ÷ b
  • Phase shift = -c ÷ b
  • Vertical shift = d

As in the question,  

  • period = π
  • phase shift = -π/3
  • Vertical shift = d = 2

As  

period = π ÷ b  

b = π/period

b = π/π ∵ period = 4π

b = 1  

Also

Phase shift = -c/b

-π/3 = -c/b ∵ phase shift = -π/3

π/3 = c/b  

c = b × π/3  

c = 1 × π/3  

c = π/3

So, putting vertical shift ⇒ d = 2, b = 1 and   c = π/3 in Equation [A] would bring us the required equation for the given function.

y=acot(bx+c)+d

y = cot(x+π/3)+2

<em>Note: The graph is also shown in attached diagram.</em>

Keywords: amplitude, period , phase shift , vertical shift

Learn more about trigonometric functions of equations from brainly.com/question/2643311

#learnwithBrainly

7 0
4 years ago
Whats the bisector of the photosentisis of the yellow sun???!??!??!
LenKa [72]

Answer:

you will use dy DX for the equation of photosynthesis. make carbon subject of formular, and factorize the final answer

7 0
3 years ago
Other questions:
  • Bristol is analyzing positive daily customer feedback on different restaurants to find the perfect place to invest. She would li
    6·1 answer
  • I need To know what number 11 and 15 are
    11·2 answers
  • 1.
    6·1 answer
  • Write an English phrase that would translate into the following mathematical expression. Which of the following is equivalent to
    10·1 answer
  • Five kittens are sharing 6 cups of milk equally how much milk does each kitten get
    9·2 answers
  • How do i find out the payout ratio
    11·1 answer
  • - 4x - 2y = -12 and 4x + 8y = -24<br> Pls help
    14·1 answer
  • 4. Jake had a 12-foot board that needed to be cut
    6·1 answer
  • Shelby's Ice Cream Shop sold 8 sundaes with nuts and 4 sundaes without nuts. What is the ratio of the number of sundaes with nut
    7·1 answer
  • Help me please I have no clue
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!