Answer:
0.508 mole
Explanation:
NOTE: Since no hydrogen is attached to the compound given in question above, it means the compound is CCl₄.
The number of mole present in 78.2 g of CCl₄ can be obtained as follow:
Mass of CCl₄ = 78.2 g
Molar mass of CCl₄ = 12 + (35.5×4)
= 12 + 142
= 154 g/mol
Mole of CCl₄ =?
Mole = mass / molar mass
Mole of CCl₄ = 78.2 / 154
Mole of CCl₄ = 0.508 mole
Therefore, 0.508 mole is present in 78.2 g of CCl₄
*A & B*
Answers A & B are not possible, as Hydrogen “bonds” are intermolecular forces and do not actually involve transfer or sharing of electrons.
*C & D*
Viscosity and surface tension are not the answer as they are not specific enough to the question.
*E*
Polarity of water molecules is the correct answer, as water molecules are highly polar. The partial positive of the Hydrogen on one water molecule is highly attracted to the partial negative of the Oxygen (due to its lone pairs) on another water molecule.
(ANS1)— P4 + 5O2 ---> 2P2O5
(ANS2)— C3H8 + 5O2---> 3CO2 + 4H20
(ANS3)— Ca2Si + 4Cl2 ---> 2CaCl2 + SiCl4
Answer:
Copper
Explanation:
Within intermolecular forces, ion-dipole is the strongest, followed by hydrogen bonding, then dipole-dipole, and then London dispersion.
Answer:
False
Explanation:
It is coal-fired power plants that produce mercury, air pollution, and carbon dioxide.
However, nuclear energy produces radioactive waste that must be stored for many years before it can be safely disposed.