Use the ideal gas law:
<em>PV=nRT
</em>p = pressure
v = volume
n = number of moles of sample
R = ideal gas constant = ~0.08206 (l*atm)/(K*mole)
T = Temp in Kelvin
Now we substitute while simultaneously solving for P(pressure)
P = (nRT)/V
P = (2.50 * 0.08206 * (27+273.15)) / 50
P = Now it's your turn.
Answer: The partial pressure of the Kr is 320 mm Hg.
Explanation:
According to Raoult's Law , the partial pressure of each component in the solution is equal to the total pressure multiplied by its mole fraction. It is mathematically expressed as

where,
= partial pressure of component A
= mole fraction of A
= total pressure
mole fraction of Krypton = 

Thus partial pressure of the Kr is 320 mm Hg
For better representation, let me rewrite the electronic configuration:
<span>1s</span>²<span>2s</span>²<span>2p</span>⁶<span>3s</span>²<span>3p</span>⁶<span>4s</span>²<span>3d</span>⁴
The exponents represent the number of electrons in the designated subshell. Thus, the total number of electrons are:
# of electrons = 2+2+6+2+6+2+4 = 24
Assuming this is in neutral state, the element with an atomic number of 24 is Chromium. Thus, the answer is Cr.
Yield is the measured amount of a product obtained from a reaction.
Hope that's helpful