Answer:
A
Step-by-step explanation:
I think I am not sure I just started to do this in school...
The zeros for this function are -2, -1 and a double root of 0.
You can find this by first factoring the polynomial on the inside of the parenthesis. Polynomials like this can be factored by looking for two numbers that multiply to the constant (2) and add up to the second coefficient (3). The numbers 2 and 1 satisfy both of those needs and thus can be used as the numbers in a factoring.
x^2(x^2 + 3x + 2)
x^2(x + 2)(x + 1)
Now to find the zeros, we set each part equal to 0. You may want to split the x^2 into two separate x's for this purpose.
(x)(x)(x + 2)(x + 1)
x = 0
x = 0
x + 2 = 0
x = -2
x + 1 = 0
x = -1
Answer:
it is 31/20 but in mixed form it's
Answer:
x = 30
y = 15
Step-by-step explanation:
<u><em>All the angles are </em></u><u><em>90°</em></u><u><em>, so set 6y and 3x equal to 90, like so:</em></u>
6y = 90
<u><em>Divide both sides by 6:</em></u>
y = 15
<u>Solving for x:</u>
3x = 90
<em><u>Divide both sides by 3:</u></em>
x = 30
Answer:
- hits the ground at x = -0.732, and x = 2.732
- only the positive solution is reasonable
Step-by-step explanation:
The acorn will hit the ground where the value of x is such that y=0. We can find these values of x by solving the quadratic using any of several means.
__
<h3>graphing</h3>
The attachment shows a graphing calculator solution to the equation
-3x^2 + 6x + 6 = 0
The values of x are -0.732 and 2.732. The negative value is the point where the acorn would have originated from if its parabolic path were extrapolated backward in time. Only the positive horizontal distance is a reasonable solution.
__
<h3>completing the square</h3>
We can also solve the equation algebraically. One of the simplest methods is "completing the square."
-3x^2 +6x +6 = 0
x^2 -2x = 2 . . . . . . . . divide by -3 and add 2
x^2 -2x +1 = 2 +1 . . . . add 1 to complete the square
(x -1)^2 = 3 . . . . . . . . written as a square
x -1 = ±√3 . . . . . . . take the square root
x = 1 ±√3 . . . . . . . add 1; where the acorn hits the ground
The numerical values of these solutions are approximately ...
x ≈ {-0.732, 2.732}
The solutions to the equation say the acorn hits the ground at a distance of -0.732 behind Jacob, and at a distance of 2.732 in front of Jacob. The "behind" distance represents and extrapolation of the acorn's path backward in time before Jacob threw it. Only the positive solution is reasonable.