Answer:
C.
Explanation:
if I am wrong I am so sorry
I believe that would be a decomposer
Those tails are called hydrophobic. You can note the etymology: hydro= water, phobi = fear, aversion, dislike.
Phospholipds' tail is a long non polar chain, made of Carbon and Hydorgens, that rejects water (a polar solvent) and is attracted to non-polar compounds (oil for example). That is why that tails can atract dirt.
The atom positions in a general molecule of formula (not shape class) AXn that has shape square pyramidal at the corers of square and one at the above center of the square.
<h3>What is square pyramidal?</h3>
The square pyramidal is a shape geometry of the hybridization in which it consists of one lone pair and 5 bond pairs of electrons that repel each other and due to which the geometry changes from octahedral to square pyramidal.
As atoms are located at the four corners of the planer and one atom at the above center of the planner which is repelled by 4 atoms present at the corner of the planer.
Therefore, the atom positions in a general molecule of formula (not shape class) AXn that has a shape square pyramidal at the corners of the square and one at the above center of the square.
Learn more about square pyramidal, here;
brainly.com/question/8742529
#SPJ4
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C