Answer:
Atoms with 5 or more valence electrons gain electrons forming a negative ion, or anion. why are outermost electrons only ones included in orbital filling diagram? they are the only ones involved in chemical reactions and bonding. ... 2s orbital is farther from the nucleus meaning it has more energy.
Explanation:
Ethane has the formula C2H6.
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of hydrogen = 1 gram
Therefore:
molar mass of ethane = 2(12) + 6(1) = 30 grams
This means that each 30 grams of ethane contains 6 grams of hydrogen. To know how many grams of hydrogen are in 3000 grams of ethane (3 kg), we will simply use cross multiplication as follows:
mass of hydrogen = (3000 x 6) / 30 = 600 grams
The answer that would best complete the given statement above would be option A. Both "Ode to the West wind" and "Ode for Melancholy" praise <span>something non-human. Hope this answers your question. Have a great day ahead!</span>
Answer:
CH₃CH₂CH₂COOH > CH₃CH₂COOH > ClCH₂CH₂COOH > ClCH₂COOH
Explanation:
Electron-withdrawing groups (EWGs) increase acidity by inductive removal of electrons from the carboxyl group.
Electron-donating groups (EDGs) decrease acidity by inductive donation of electrons to the carboxyl group.
- The closer the substituent is to the carboxyl group, the greater is its effect.
- The more substituents, the greater the effect.
- The effect tails off rapidly and is almost zero after about three C-C bonds.
CH₃CH₂-CH₂COOH — EDG — weakest — pKₐ = 4.82
CH₃-CH₂COOH — reference — pKₐ = 4.75
ClCH₂-CH₂COOH — EWG on β-carbon— stronger — pKₐ = 4.00
ClCH₂COOH — EWG on α-carbon — strongest — pKₐ = 2.87
Explanation:
Reaction:
Cu + 2AgC₂H₃O₂ → Cu(C₂H₃O₂)₂ + 2Ag
The problem is to split the reaction into oxidation and reduction halves:
The oxidation half is the sub-reaction that undergoes oxidation
The reduction half is the one that undergoes reduction:
The ionic equation:
Cu + 2Ag⁺ + 2C₂H₃O₂⁻ → Cu²⁺ + 2C₂H₃O₂⁻ + 2Ag
Oxidation half:
Cu → Cu²⁺ + 2e⁻
Reduction half:
2Ag⁺ + 2e⁻ → 2Ag
C₂H₃O₂⁻ is neither oxidized nor reduced in the reaction.
learn more:
Oxidation state brainly.com/question/10017129
#learnwithBrainly