Answer:
Step-by-step explanation:
<h3>
Convert kilometer to miles:</h3>
1 km = 0.62 mi
So, to convert 6 km to mi, multiply 6 by 0.62.
6km = 6* 0.62
= 3.72 mi
<h3>Convert liter to gallon:</h3>
1 L = 0.26 gal
To convert 2.5 L to gallon, multiply 2.5 by 0.26.
2.5 L = 2.5 * 0.26
= 0.65 gal
<h3>Convert pound to kilogram:</h3>
1 lb = 0.45 Kg
To convert 90 lb to Kg, multiply 90 by 0.45.
90 lb = 90 *0.45
= 40.5 Kg
Answer:
common ratio: 1.155
rate of growth: 15.5 %
Step-by-step explanation:
The model for exponential growth of population P looks like: 
where
is the population at time "t",
is the initial (starting) population
is the common ratio,
and
is the rate of growth
Therefore, in our case we can replace specific values in this expression (including population after 12 years, and initial population), and solve for the unknown common ratio and its related rate of growth:
![P(t)=P_i(1+r)^t\\13000=2300*(1+r)^{12}\\\frac{13000}{2300} = (1+r)^12\\\frac{130}{23} = (1+r)^{12}\\1+r=\sqrt[12]{\frac{130}{23} } =1.155273\\](https://tex.z-dn.net/?f=P%28t%29%3DP_i%281%2Br%29%5Et%5C%5C13000%3D2300%2A%281%2Br%29%5E%7B12%7D%5C%5C%5Cfrac%7B13000%7D%7B2300%7D%20%3D%20%281%2Br%29%5E12%5C%5C%5Cfrac%7B130%7D%7B23%7D%20%3D%20%281%2Br%29%5E%7B12%7D%5C%5C1%2Br%3D%5Csqrt%5B12%5D%7B%5Cfrac%7B130%7D%7B23%7D%20%7D%20%3D1.155273%5C%5C)
This (1+r) is the common ratio, that we are asked to round to the nearest thousandth, so we use: 1.155
We are also asked to find the rate of increase (r), and to express it in percent form. Therefore we use the last equation shown above to solve for "r" and express tin percent form:

So, this number in percent form (and rounded to the nearest tenth as requested) is: 15.5 %
Answer:
(a) E(X) = -2p² + 2p + 2; d²/dp² E(X) at p = 1/2 is less than 0
(b) 6p⁴ - 12p³ + 3p² + 3p + 3; d²/dp² E(X) at p = 1/2 is less than 0
Step-by-step explanation:
(a) when i = 2, the expected number of played games will be:
E(X) = 2[p² + (1-p)²] + 3[2p² (1-p) + 2p(1-p)²] = 2[p²+1-2p+p²] + 3[2p²-2p³+2p(1-2p+p²)] = 2[2p²-2p+1] + 3[2p² - 2p³+2p-4p²+2p³] = 4p²-4p+2-6p²+6p = -2p²+2p+2.
If p = 1/2, then:
d²/dp² E(X) = d/dp (-4p + 2) = -4 which is less than 0. Therefore, the E(X) is maximized.
(b) when i = 3;
E(X) = 3[p³ + (1-p)³] + 4[3p³(1-p) + 3p(1-p)³] + 5[6p³(1-p)² + 6p²(1-p)³]
Simplification and rearrangement lead to:
E(X) = 6p⁴-12p³+3p²+3p+3
if p = 1/2, then:
d²/dp² E(X) at p = 1/2 = d/dp (24p³-36p²+6p+3) = 72p²-72p+6 = 72(1/2)² - 72(1/2) +6 = 18 - 36 +8 = -10
Therefore, E(X) is maximized.
Answer:
linked below
Step-by-step explanation:
If you use desmos, it show this which is the correct graph :)