1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alik [6]
3 years ago
7

Anyone know the answer?

Mathematics
1 answer:
balu736 [363]3 years ago
5 0

Answer:

segment BC is located at B (1, 0) and C (1, 3) and is one-half the size of segment B C .

You might be interested in
Chelsea needs to take a taxi home and lives 7 miles away. The taxi company charges $4 plus $1.50 per mile. How much will she pay
Andreas93 [3]
Y = 1.50x + 4......x = 7
y = 1.50(7) + 4
y = 10.50 + 4
y = 14.50 <===
3 0
3 years ago
Read 2 more answers
Find the exact length of the third side.
frez [133]

Step-by-step explanation:

Hello there!

Use the Pythagoream theorem:

a^{2} +b^{2} =c^{2} \\4^2+2^2=c^2\\16+4=20\\x=\sqrt{20} \\x=4.472135

:)

7 0
3 years ago
Read 2 more answers
I have two coins totaling 15 cents. One of them is it a nickel. What are they?
Aloiza [94]
One is a nickel and the other is a dime
5 0
3 years ago
Hello help me with this question thanks in advance​
Ede4ka [16]

\bold{\huge{\green{\underline{ Solutions }}}}

<h3><u>Answer </u><u>1</u><u>1</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

\sf{HM = 5 cm }

  • <u>In </u><u>square </u><u>all </u><u>sides </u><u>of </u><u>squares </u><u>are </u><u>equal </u>

<u>The </u><u>perimeter </u><u>of </u><u>square </u>

\sf{ = 4 × side }

\sf{ = 4 × 5 }

\sf{ = 20 cm }

Thus, The perimeter of square is 20 cm

Hence, Option C is correct .

<h3><u>Answer </u><u>1</u><u>2</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

\sf{MX  = 3.5 cm }

  • <u>In </u><u>square</u><u>,</u><u> </u><u>diagonals </u><u>are </u><u>equal </u><u>and </u><u>bisect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u>

<u>Here</u><u>, </u>

\sf{MX  = MT/2}

\sf{MT = 2 * 3.5 }

\sf{MT = 7 cm}

Thus, The MT is 7cm long

Hence, Option C is correct .

<h3><u>Answer </u><u>1</u><u>3</u><u> </u><u>:</u><u>-</u><u> </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>measure </u><u>of </u><u>Ang</u><u>l</u><u>e</u><u> </u><u>MAT</u>

  • <u>All </u><u>angles </u><u>of </u><u>square </u><u>are </u><u>9</u><u>0</u><u>°</u><u> </u><u>each </u>

<u>From </u><u>above </u>

\sf{\angle{MAT  = 90° }}

Thus, Angle MAT is 90°

Hence, Option B is correct .

<h3><u>Answer </u><u>1</u><u>4</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>know </u><u>that</u><u>, </u>

  • <u>All </u><u>the </u><u>angles </u><u>of </u><u>square </u><u>are </u><u>equal </u><u>and </u><u>9</u><u>0</u><u>°</u><u> </u><u>each </u>

<u>Therefore</u><u>, </u>

\sf{\angle{MHA  = }}{\sf{\angle{ MHT/2}}}

\sf{\angle{MHA = 90°/2}}

\sf{\angle {MHA = 45°}}

Thus, Angle MHA is 45°

Hence, Option A is correct

<h3><u>Answer </u><u>1</u><u>5</u><u> </u><u>:</u><u>-</u><u> </u></h3>

Refer the above attachment for solution

Hence, Option A is correct

<h3><u>Answer </u><u>1</u><u>6</u><u> </u><u>:</u><u>-</u><u> </u></h3>

Both a and b

  • <u>The </u><u>median </u><u>of </u><u>isosceles </u><u>trapezoid </u><u>is </u><u>parallel </u><u>to </u><u>the </u><u>base</u>
  • <u>The </u><u>diagonals </u><u>are </u><u>congruent </u>

Hence, Option C is correct

<h3><u>Answer </u><u>1</u><u>7</u><u> </u><u>:</u><u>-</u></h3>

In rhombus PALM,

  • <u>All </u><u>sides </u><u>and </u><u>opposite </u><u>angles </u><u>are </u><u>equal </u>

Let O be the midpoint of Rhombus PALM

<u>In </u><u>Δ</u><u>OLM</u><u>, </u><u>By </u><u>using </u><u>Angle </u><u>sum </u><u>property </u><u>:</u><u>-</u>

\sf{35° + 90° + }{\sf{\angle{ OLM = 180°}}}

\sf{\angle{OLM = 180° - 125°}}

\sf{\angle{ OLM = 55° }}

<u>Now</u><u>, </u>

\sf{\angle{OLM = }}{\sf{\angle{OLA}}}

  • <u>OL </u><u>is </u><u>the </u><u>bisector </u><u>of </u><u>diagonal </u><u>AM</u>

<u>Therefore</u><u>, </u>

\sf{\angle{ PLA = 55° }}

Thus, Angle PLA is 55° .

Hence, Option C is correct

8 0
3 years ago
what is the equation of a line that passes through the points (0,5) and (4,8)? write the answer in slope-intercept form.
Sergio039 [100]

Answer:

<h2>y = 3/4x + 5</h2>

Step-by-step explanation:

The slope-intercept form:

y=mx+b

m - slope

b - y-intercept → (0, b)

The formula of a slope:

m=\dfrac{y_2-y_1}{x_2-x_1}

We have the points (4, 8) and (0, 5) → b = 5.

Calculate the slope:

m=\dfrac{5-8}{0-4}=\dfrac{-3}{-4}=\dfrac{3}{4}

Therefore we have the equation of the line:

y=\dfrac{3}{4}x+5

4 0
3 years ago
Read 2 more answers
Other questions:
  • Gouilleul Sequence.
    13·1 answer
  • What is the perimeter of a rectangle with a length of 7 3/4 inches and a width of 4 1/3 inches
    5·2 answers
  • 240in= to how many feet
    13·1 answer
  • Write the product as a power.<br> 1. 5 x 5 x 5<br> 2. 13 x 13<br> 3. 8.8.8.8.8.8<br> Plz help!!
    10·1 answer
  • What operation would you use to solve the equation below for y? y - 15 = 20
    5·2 answers
  • I dont know how to do this and its long, 30 points who ever gets it right
    14·1 answer
  • Solve for u.<br> Simplify your answer as much as possible.
    10·1 answer
  • 12 + 6 − 4 ÷ (2 + 5)
    5·1 answer
  • PLS HELP WILL MARK BRAINLYEST
    13·2 answers
  • Can someone help (Geometry)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!