true because matter is a space not a space
<u>Answer:</u> The value of
for the net reaction is 
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> 
<u>Equation 2:</u> 
The net equation follows:
As, the net reaction is the result of the addition of first equation and the second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of
for the net reaction is 
Answer: It will take 29 years for a 10.0-gram sample of strontium-90 to decay to 5.00 grams
Explanation:
Radioactive decay process is a type of process in which a less stable nuclei decomposes to a stable nuclei by releasing some radiations or particles like alpha, beta particles or gamma-radiations. The radioactive decay follows first order kinetics.
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
Half life is represented by 

= rate constant
Given : Strontium-90 decreases in mass by one-half every 29 years , that is half life of Strontium-90 is 29 years.
As half life is independent of initial concentration, it will take 29 years for a 10.0-gram sample of strontium-90 to decay to 5.00 grams as the amount gets half.
It is an inorganic<span> compound
hope this helps
</span>
Answer:
Correct option is A)
[H
+
]=
KaC
=
1.8×10
−6
=1.34×10
−3
pH=−log[H
+
]
=2.88
Explanation:
here is your answer if you like my answer please follow