Given :
Number of molecules of hydrogen peroxide, N = 4.5 × 10²².
To Find :
The mass of given molecules of hydrogen peroxide.
Solution :
We know, 1 mole of every compound contains Nₐ = 6.022 × 10²³ molecules.
So, number of moles of hydrogen peroxide is :

Now, mass of hydrogen peroxide is given as :
m = n × M.M
m = 0.0747 × 34 grams
m = 2.54 grams
Hence, this is the required solution.
You first add the manganese and exchange the number of electrons needed with the hydroxide. While the hydroxide needs only 1 electron the manganese needs 4, so after you exchange the electrons the manganese will be just 1 atom while the hydroxide is 4. Mn(OH)4
Answer:
Electronegativity in group 1 decreases as we go from Lithium to Francium.
Explanation:
Electronegativity is defined as the tendency of an element to attract an electron pair towards itself.
In a group generally this tendency decreases from top to bottom as the size of the atom increases and hence the positive nucleus get far from the outer orbital.
In the same way group 1 elements i.e. from Lithium to Francium electronegativity decreases.
Answer: For 1 mole of a single atom it is equal to its molar mass. And a single atom, 1 mole is equal to the Avogadro's Number.
Explanation: The relationship can be expressed through the following:
1 mole = molar mass of an atom/ compound
1 atom x 1 mole / 6.022x10^23 atoms