Let be:Speed of the wind: WSpeed of the plane in still air: P
Against the wind the plane flew:Distance: d=175 milesTime: ta=1 hour 10 minutesta=1 hour (10 minutes)*(1 hour/60 minutes)ta=1 hour + 1/6 hourta=(6+1)/6 hourta=7/6 hourSpeed against the wind: Sa=d/taSa=(175 miles) / (7/6 hour)Sa=175*(6/7) miles/hourSa=1,050/7 miles per hourSa=150 mph
(1) P-W=Sa(1) P-W=150
The return trip only took 50 minutesDistance: d=175 milesTime: tr=50 minutestr=(50 minutes)*(1 hour/60 minutes)tr=5/6 hour
Speed retur trip: Sr=d/trSr=(175 miles) / (5/6 hour)Sr=175*(6/5) miles/hourSr=1,050/5 miles per hourSr=210 mph
(2) P+W=Sr(2) P+W=210
We have a system of 2 equations and 2 unknows:(1) P-W=150(2) P+W=210
Adding the equations:P-W+P+W=150+2102P=360Solving for P:2P/2=360/2P=180
Replacing P by 180 in equation (2):(2) P+W=210180+W=210
Solving for W:180+W-180=210-180W=30
Answers:The speed of the plane in still air was 180 mphThe speed of the wind was 30 mph
Answer:
A=8.4063
Step-by-step explanation:
Be the functions:

according the graph:
=3[(ln7-ln1)-(\frac{1}{7}-1)]=3[(1.945-0)-(0.1428-1)]=3*(1.945+0.8571)=3*2.8021=8.4063u^{2}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_7%20%7B%5Cfrac%7B3%7D%7Bx%7D%20%7D%20%5C%2C%20dx%20-%5Cint%5Climits%5E1_7%20%7B%5Cfrac%7B3%7D%7Bx%5E%7B2%7D%20%7D%20%7D%20%5C%2C%20dx%20%3D3%5Cint%5Climits%5E1_7%20%7B%5Cfrac%7B1%7D%7Bx%7D%20%7D%20%5C%2C%20dx%20-3%5Cint%5Climits%5E1_7%20%7B%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%20%7D%20%7D%20%5C%2C%20dx%3D3%28%5Cint%5Climits%5E1_7%20%7B%5Cfrac%7B1%7D%7Bx%7D%20%7D%20%5C%2C%20dx%20-%5Cint%5Climits%5E1_7%20%7B%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%20%7D%20%7D%20%5C%2C%20dx%29%3D3%5Blnx-%5Cfrac%7B1%7D%7Bx%7D%5D%281-7%29%3D3%5B%28ln7-ln1%29-%28%5Cfrac%7B1%7D%7B7%7D-1%29%5D%3D3%5B%281.945-0%29-%280.1428-1%29%5D%3D3%2A%281.945%2B0.8571%29%3D3%2A2.8021%3D8.4063u%5E%7B2%7D)
X=8 & z=66
because vertical angles are congruent