Answer:
Horizontal distance between the log and the bridge when the stone is released = 17.24 m
Step-by-step explanation:
Height of bridge, h = 50.8 m
Speed of log = 5.36 m/s
We need to find the horizontal distance between the log and the bridge when the stone is released, for that first we need to find time taken by the stone to reach on top of log,
We have equation of motion. s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 50.8 m
Substituting,
s = ut + 0.5 at²
50.8 = 0.5 x 9.81 x t²
t = 3.22 seconds,
So log travels 3.22 seconds at a speed of 5.36 m/s after the release of stone,
We have equation of motion. s = ut + 0.5 at²
Initial velocity, u = 5.36 m/s
Acceleration, a = 0 m/s²
Time, t = 3.22 s
Substituting,
s = ut + 0.5 at²
s = 5.36 x 3.22 + 0.5 x 0 x 3.22²
s = 17.24 m
Horizontal distance between the log and the bridge when the stone is released = 17.24 m