Couple things to note:
- Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept.
- Slope can be calculated using any two points on a line and the formula y₁ - y₂ / x₁ - x₂.
For the first problem, we know the slope of Function A is 6 (refer to slope-intercept form above). To compare the slopes of Function A and Function B, first find the slope of Function B.
Use y₁ - y₂ / x₁ - x₂. Two points on the line are (0, 1) and (-1, -2). Plug these into the formula accordingly and solve for slope.
y₁ - y₂ / x₁ - x₂
1 - (-2) / 0 - (-1)
1 + 2 / 0 + 1
3 / 1
3
The slope of Function B is 3. This is half of 6 (the slope of Function A), so the correct answer to question 1 is the first option: Slope of Function B = 2 × Slope of Function A.
For the second problem, substitute m and b in y = mx + b according to the graph. b is the y-intercept (the point at which the line intersects the y-axis); it is (0, -4), or -4. This gives us
y = mx - 4
We must now find m. Follow the same steps above to find slope. Our two points are (-2, 0) and (0, -4).
y₁ - y₂ / x₁ - x₂
0 - (-4) / -2 - 0
0 + 4 / -2
4 / -2
-2
Substitute.
y = -2x - 4
The first option is the correct answer.
Answer:
The small balloon bouquet uses 7 balloons and the large one uses
18 balloons.
Step-by-step explanation:
Let's say that small balloon bouquets are S and large balloon bouquets are L. For the graduation party the employee assembled 6 small bouquets and 6 large bouquets, the total number of balloon used is 150. To put the sentence into an equation will be:
6S + 6L= 150
S+L= 25 ----> 1st equation
For Father's Day, the employee uses 6 small bouquet and 1 large bouquet, the total number of balloons used is 60. The equation will be:
6S + 1L= 60
1L= 60- 6S ----> 2nd equation
We can solve the number of small balloon bouquet by substitute the 2nd equation into 1st. The calculation will be:
S+L = 25
S+ (60-6S)= 25
-5S= 25-60
-5S= -35
S= -35/-5
S=7
Then we can find L by substitute S value to 1st or 2nd equation.
S+L=25
7+L=25
L=18
Hope this helps ;)
5.4x10^11 metres per second or 540,000,000,000 metres per second