❅If Perry is 1.7 m tall then he is going to be dm tall.
❅Think about it like this:
❅2.7 m is 27 dm.
❅Easy right?
Answer:

Step-by-step explanation:
Here, the given expression is:

Now, by logarithm rules, we know
if 
, then x =
Comparing here, b = 10 and z = 2
⇒ y = 
or, 
so, we know both the rectangular prism and the cylinder got filled up to a certain height each, the same height say "h" cm.
we know the combined volume of both is 80 cm³, so let's get the volume of each, sum them up to get 80 then.
![\bf \stackrel{\stackrel{\textit{volume of a}}{\textit{rectangular prism}}}{V=Lwh}~~ \begin{cases} L=length\\ w=width\\ h=height\\[-0.5em] \hrulefill\\ L=4\\ w=2\\ \end{cases}~\hspace{2em}\stackrel{\textit{volume of a cylinder}}{V=\pi r^2 h}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%7D%7D%7B%5Ctextit%7Brectangular%20prism%7D%7D%7D%7BV%3DLwh%7D~~%20%5Cbegin%7Bcases%7D%20L%3Dlength%5C%5C%20w%3Dwidth%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20L%3D4%5C%5C%20w%3D2%5C%5C%20%5Cend%7Bcases%7D~%5Chspace%7B2em%7D%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%7D%7BV%3D%5Cpi%20r%5E2%20h%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

The given expression is a perfect square trinomial.
<h3>
How to classify the given expression?</h3>
Here we have the expression:

Notice that we can rewrite it as:

Then we can see that inside the parenthesis we have a difference of squares, but it is squared, so if we define:

We will have:

Which is in fact, a perfect square trinomial.
If you want to learn more about perfect squares:
brainly.com/question/1538726
#SPJ1
Length of the model = 11.6 inch