1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Feliz [49]
3 years ago
9

Find the function y1 of t which is the solution of 121y′′+110y′−24y=0 with initial conditions y1(0)=1,y′1(0)=0. y1= Note: y1 is

a linear combination of the two independent solutions of this differential equation that you found first. You are not being asked for just one of these. You will need to determine the values of the two constant parameters c1 and c2. Similarly for finding y2 below. Find the function y2 of t which is the solution of 121y′′+110y′−24y=0 with initial conditions y2(0)=0,y′2(0)=1. y2= Find the Wronskian W(t)=W(y1,y2). W(t)= Remark: You can find W by direct computation and use Abel's theorem as a check. You should find that W is not zero and so y1 and y2 form a fundamental set of solutions of 121y′′+110y′−24y=0.
Mathematics
1 answer:
strojnjashka [21]3 years ago
8 0

Answer:

Step-by-step explanation:

The original equation is 121y''+110y'-24y=0. We propose that the solution of this equations is of the form y = Ae^{rt}. Then, by replacing the derivatives we get the following

121r^2Ae^{rt}+110rAe^{rt}-24Ae^{rt}=0= Ae^{rt}(121r^2+110r-24)

Since we want a non trival solution, it must happen that A is different from zero. Also, the exponential function is always positive, then it must happen that

121r^2+110r-24=0

Recall that the roots of a polynomial of the form ax^2+bx+c are given by the formula

x = \frac{-b \pm \sqrt[]{b^2-4ac}}{2a}

In our case a = 121, b = 110 and c = -24. Using the formula we get the solutions

r_1 = -\frac{12}{11}

r_2 = \frac{2}{11}

So, in this case, the general solution is y = c_1 e^{\frac{-12t}{11}} + c_2 e^{\frac{2t}{11}}

a) In the first case, we are given that y(0) = 1 and y'(0) = 0. By differentiating the general solution and replacing t by 0 we get the equations

c_1 + c_2 = 1

c_1\frac{-12}{11} + c_2\frac{2}{11} = 0(or equivalently c_2 = 6c_1

By replacing the second equation in the first one, we get 7c_1 = 1 which implies that c_1 = \frac{1}{7}, c_2 = \frac{6}{7}.

So y_1 = \frac{1}{7}e^{\frac{-12t}{11}} + \frac{6}{7}e^{\frac{2t}{11}}

b) By using y(0) =0 and y'(0)=1 we get the equations

c_1+c_2 =0

c_1\frac{-12}{11} + c_2\frac{2}{11} = 1(or equivalently -12c_1+2c_2 = 11

By solving this system, the solution is c_1 = \frac{-11}{14}, c_2 = \frac{11}{14}

Then y_2 = \frac{-11}{14}e^{\frac{-12t}{11}} + \frac{11}{14} e^{\frac{2t}{11}}

c)

The Wronskian of the solutions is calculated as the determinant of the following matrix

\left| \begin{matrix}y_1 & y_2 \\ y_1' & y_2'\end{matrix}\right|= W(t) = y_1\cdot y_2'-y_1'y_2

By plugging the values of y_1 and

We can check this by using Abel's theorem. Given a second degree differential equation of the form y''+p(x)y'+q(x)y the wronskian is given by

e^{\int -p(x) dx}

In this case, by dividing the equation by 121 we get that p(x) = 10/11. So the wronskian is

e^{\int -\frac{10}{11} dx} = e^{\frac{-10x}{11}}

Note that this function is always positive, and thus, never zero. So y_1, y_2 is a fundamental set of solutions.

You might be interested in
I NEED THE ANSWER TO THIS NOW
Mandarinka [93]

i think the answer is the 3rd one

plz give me brainliest

3 0
3 years ago
What is the constant of proportionality in the equation y=25X?
Ad libitum [116K]

Answer:

Step-by-step explanation:

y = kx

If y = 25x , then k = 25

5 0
3 years ago
How much she makes per hour
Luda [366]

90÷5=18 which means she makes $18 every hour.

Answer= $18

7 0
3 years ago
Read 2 more answers
Is the point (3, 4) a solution to the equation 3y = 2x +6 ? Explain why using evidence from your work
irinina [24]

Answer:

Yes

Step-by-step explanation:

When graphing it you can see that (3, 4) is clearly a solution. The proper equation using slope intercept form is y= 2/3x + 2.

7 0
3 years ago
How does using a model help me multiply decimals by whole numbers?
valkas [14]
Counting them it simple
5 0
3 years ago
Other questions:
  • Use matrix addition to solve this equation:
    5·1 answer
  • Please need help on this
    9·2 answers
  • Equation to find original price if sale price of $429 is a 34% discount
    8·1 answer
  • Find the value of x. round your answer to the nearest tenth.
    5·1 answer
  • When is it appropriate to use the paired t test (involving the mean of the differences)? A. When two independent samples are com
    6·1 answer
  • Help me plzzzz!!!!!
    10·1 answer
  • What are the x-intercepts of the graph of y = x2 + 7x + 10?
    11·1 answer
  • What is the volume of the triangular prism below?
    9·2 answers
  • Fill i the blank
    9·1 answer
  • I need a word question that is a negative divided by a positive.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!