Baloon with 3 moles og oxygen at 1 atm.The temperature of the balloon is <u>4 Kelvin</u>.
An ideal gas is a theoretical gas composed of many randomly transferring factor particles that aren't difficult to interparticle interactions. the best gasoline idea is beneficial because it obeys the precise gas law, a simplified equation of country, and is amenable to evaluation under statistical mechanics.
An ideal gas is described as one for which both the extent of molecules and forces between the molecules are so small that they have got no effect at the behavior of the gas. The real gas that acts almost like a really perfect gasoline is helium. that is due to the fact helium, in contrast to maximum gases, exists as an unmarried atom, which makes the van der Waals dispersion forces as low as viable
Using the ideal gas equation:-
Given;
P₁ = 1 atm
V₁ = 100 L
n = 3
r = 8.314
T = PV/nR
= 1 × 100 / 3 × 8.314
= 4 K
Learn more about ideal gas here:-brainly.com/question/20348074
#SPJ4
Answer:
7,94 minutes
Explanation:
If the descomposition of HBr(gr) into elemental species have a rate constant, then this reaction belongs to a zero-order reaction kinetics, where the r<em>eaction rate does not depend on the concentration of the reactants. </em>
For the zero-order reactions, concentration-time equation can be written as follows:
[A] = - Kt + [Ao]
where:
- [A]: concentration of the reactant A at the <em>t </em>time,
- [A]o: initial concentration of the reactant A,
- K: rate constant,
- t: elapsed time of the reaction
<u>To solve the problem, we just replace our data in the concentration-time equation, and we clear the value of t.</u>
Data:
K = 4.2 ×10−3atm/s,
[A]o=[HBr]o= 2 atm,
[A]=[HBr]=0 atm (all HBr(g) is gone)
<em>We clear the incognita :</em>
[A] = - Kt + [Ao]............. Kt = [Ao] - [A]
t = ([Ao] - [A])/K
<em>We replace the numerical values:</em>
t = (2 atm - 0 atm)/4.2 ×10−3atm/s = 476,19 s = 7,94 minutes
So, we need 7,94 minutes to achieve complete conversion into elements ([HBr]=0).
Plants most commonly break large rock into smaller pieces by having the plant root grow into cracks in rocks. The plant root from below the surface grows and that's how they break rocks into pieces.