Answer:
45.3°C
Explanation:
Step 1:
Data obtained from the question.
Initial pressure (P1) = 82KPa
Initial temperature (T1) = 26°C
Final pressure (P2) = 87.3KPa.
Final temperature (T2) =.?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
This is illustrated below:
T(K) = T(°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K.
Step 3:
Determination of the new temperature of the gas. This can be obtained as follow:
P1/T1 = P2/T2
82/299 = 87.3/T2
Cross multiply to express in linear form
82 x T2 = 299 x 87.3
Divide both side by 82
T2 = (299 x 87.3) /82
T2 = 318.3K
Step 4:
Conversion of 318.3K to celsius temperature. This is illustrated below:
T(°C) = T(K) – 273
T(K) = 318.3K
T(°C) = 318.3 – 273
T(°C) = 45.3°C.
Therefore, the new temperature of the gas in th tire is 45.3°C
Answer: Option (B) is the correct answer.
Explanation:
A covalent compound is a compound formed by sharing of electrons. And, in a covalent network solid atoms are bonded by covalent bonds in a continuous network that is extending throughout the material or solid.
This continuous arrangement of atoms are like a lattice.
For example, diamond is a covalent network solid in which carbon atoms are arranged in a continuous lattice like structure.
Hence, we can conclude that the statement all the atoms are covalently bonded to other atoms to form a lattice-like structure, best describes the structure of covalent network solids.
The answer is B Covalent bonds
Answer:
Explanation:
A homogeneous mixture consists of one single phase while a heterogeneous mixture consists of two or more phases.