The orbital period is proportional to r^(3/2) and does not depend on the satellite's mass. Any object at Jupiter's position will have the same orbital period regardless of mass. The correct answer is 11.9 yr. <u>Option C.</u>
As the Earth rotates on its axis creating day and night, it travels around the Sun in an elliptical orbit taking about 365 1/4 days to complete. The Earth's rotation axis is tilted with respect to the orbital plane. This creates seasons. The elliptical nature of the Earth's orbit is due to the first forces pushing the Earth away from the Sun's disk.
The momentum of this throw being greater the Earth's orbit would have been more elliptical or it might have been completely ejected from the solar system forever. The Earth's orbit defines a two-dimensional plane called the Ecliptic. It takes about 365 days for the earth to revolve around the sun. After years of analysis, Kepler found that Mars' orbit was likely elliptical, with the Sun at one of his focal points of the ellipse. This led Kepler to discover that all planets orbit the Sun in elliptical orbits and that the Sun is at one of his two focal points.
Learn more about The mass here:-brainly.com/question/26150306
#SPJ4
Answer:
B
Explanation:
Pressure is directly proportional to temperature
The molarity of NaOH needed is calculated as follows
calculate the moles of KhC8h4O4
that is moles = mass/molar mass of KhC8h4O4(204.22 g/mol)
=0.5632g /204.22g/mol= 2.76 x10^-3 moles
write the equation for reaction
khc8h4O4 + NaOH ---> KNaC8h4O4 + H2O
from the equation above the reacting ratio of KhC8h4O4 to NaOh is 1:1 therefore the moles of Naoh is also 2.76 x10^-3 moles
molarity of NaOh = (moles of NaOh / volume ) x 1000
that is { (2.76 x10^-3) / 23.64} x100 =0.117 M
Answer:
isn't that evaporation if not you can just delete my answer-
Explanation:
Answer: The concentration of hydrogen ion in the given solution is
.
Explanation:
pOH of a solution is the negative logarithm of concentration of hydroxide ions.
Hence, if
is
then its pOH value is calculated as follows.
![pOH = -log [OH^{-}]\\= -log (3.5 \times 10^{-5})\\= 4.45](https://tex.z-dn.net/?f=pOH%20%3D%20-log%20%5BOH%5E%7B-%7D%5D%5C%5C%3D%20-log%20%283.5%20%5Ctimes%2010%5E%7B-5%7D%29%5C%5C%3D%204.45)
Now, the relation between pH and pOH is as follows.
pH + pOH = 14
pH + 4.45 = 14
pH = 14 - 4.45
= 9.55
And, pH is the negative logarithm of concentration of hydrogen ions. Hence,
is calculated as follows.
![pH = -log [H^{+}]\\9.55 = -log [H^{+}]\\H^{+} = 2.81 \times 10^{-10}](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C9.55%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5CH%5E%7B%2B%7D%20%3D%202.81%20%5Ctimes%2010%5E%7B-10%7D)
Thus, we can conclude that the concentration of hydrogen ion in the given solution is
.