Answer:
Vertical asymptote:x=-4
Horizontal asymptote: y=2
Step-by-step explanation:
The given rational function is

To find the vertical asymptote we equate the denominator to zero and solve for x.
x+4=0
The equation of the vertical asymptote is
x=-4
To find the horizontal asymptote we take limit to infinity. Or simply express the coefficient of x in the numerator over the coefficient of x in the denominator since this is a proper rational function.
The horizontal asymptote has equation

Answer:
Constructive Proof
Step-by-step explanation:
Let x be a positive integer
x must be equal to sum of all positive integers exceeding it
i.e.
x = x + (x - 1) + ( x - 2) + ......... + 2 + 1
Equivalently,
x = ∑i (where i = 1 to x)
The property finite sum;
∑i (i = 1 to x) = x(x + 1)/2
So,
x = x(x + 1)/2 ------- Multiply both sides by 2
2 * x = 2 * x(x + 1)/2
2x = x(x + 1)
2x = x² + x ------- subtract 2x from both sides
2x - 2x = x² + x - 2x
0 = x² + x - 2x ----- Rearrange
x² + x - 2x = 0
x² - x = 0 ------ Factorise
x(x - 1) = 0
So,
x = 0 or x - 1 = 0
x = 0 or x = 1 + 0
x = 0 or x = 1
But x ≠ 0
So, x = 1
The statement is only true for x = 1
This makes sense because 1 is the only positive integer not exceeding 1
1 = 1
It is a Constructive Proof
A proof is constructive when we find an element for which the statement is true.
Answer:
Here is the answer and explain it step by step
Step-by-step explanation:
Answer:
a.) w = 103 * 1.08^t
b.) 3.5weeks
Step-by-step explanation:
If Her current weight is 103 pounds and she hopes to multiply her her weight each week by 1.08, then
her weight after 1 week = 103 * 1.08 = 103 * 1.08¹
Her weight after 2 weeks = [weight of week 1] * 1.08 = [103* 1.08] * 1.08 = 103 * 1.08²
Weight after 3 weeks= [weight of week 2] * 1.08 = [103 * 1.08 * 1.08] * 1.08 = 103 * 1.08³
Hence weight (W) after t weeks = 103 * 1.08^t
b.) If W = 135, Then
103 * 1.08^t = 135
1.08^t = 135/103
1.08^t = 1.31
Taking log of both sides,
log 1.08^t = log 1.31
t log 1.08 = log 1.32
t = log 1.32/log 1.08
t = 3.5 weeks.
Hence, it will take her 3½ weeks to get to 135pounds weight.