The given condition for a 100% efficient step down transformer is not true.
<h3>
How do Step-down Transformers work?</h3>
Because there are fewer turns in the secondary winding of a step-down transformer, the secondary voltage is lower than the initial voltage. As a result, this kind of transformer is employed to reduce the voltage to the levels intended for the circuit. Almost all power supply incorporate a step-down transformer to keep the operating voltage range of the circuit within acceptable limits. Electronic transformers and distribution systems are often where these transformers are installed (power transformers).
<h3>
What Does a Step-Down Transformer Mean by Power?</h3>
Using the system voltage and current, we can calculate the power of a transformer. Volt-Amps, or VA, is the unit used to measure the power in a transformer (for larger transformers Kilo Volt-Amps, kVA).
Any transformer should, in theory, have constant power on both sides, which implies that the power available on the secondary side of the transformer should match the power available on the primary side. This also applies to step-down transformers. A step-down transformer's secondary side has a lower voltage than its primary side, hence in order to balance the transformer's total power, the secondary current would need to be increased.
<h3>
What is the Step-Down Transformer's Relationship Between Voltage and Current?</h3>
In a step-down transformer, the output current is greater than the input current while the output voltage is lower than the primary voltage.
To know more about step down transformer visit:
brainly.com/question/7551270
#SPJ4
Answer: 580 x 10^-3 J
Explanation:
0.6mm is 0.6/1000 = 600*10^-6 m
The plate area is .17*.17 = 28.9*10^-3 m^2
Air:
The voltage that can be sustained by 0.60 mm of air dielectric is:
V = 3.0*10^6* 600*10^-6 = 1800 V
The capacitance is:
C = ε*A/d = 8.854*10^-12 * 28.9*10^-3/600*10^-6 = 426*10^-12 F = 426 pF
The energy stored in a capacitor is:
E = (1/2)*C*V^2 = (1/2)*426*10^-12*(1800)^2 = 691*10^-6 J
Teflon:
The voltage is:
V = 60*10^6* 600*10^-6 = 36*10^3 = 36 kV
According to the listed reference, the relative dielectric constant for teflon is 2.1, this figure multiplies the "ε" of free space.
The capacitance is:
C = ε*A/d = 2.1*8.854*10^-12 * 28.9*10^-3/600*10^-6 = 896*10^-12 F = 896 pF
It would have been easier to note that the capacitance is 2.1 times the air-dielectric case.
The maximum energy stored is:
E = (1/2)*C*V^2 = (1/2)* 896*10^-12* (36*10^3)^2 = 580*10^-3 J
The correct answer are
a) "The number of muscle fibers best determines how powerful a muscle will be"
b) "The more a muscle shortens, the more power it generates."
Reason :
Muscle fiber in longitudinal directions generate more power
Multipennate muscles do not produce much power because the tendon branches within muscle
.