Answer:
The amplitude of the oscillation is 2.82 cm
Explanation:
Given;
mass of attached block, m = 4.1 kg
energy of the stretched spring, E = 3.8 J
period of oscillation, T = 0.13 s
First, determine the spring constant, k;
![T = 2\pi \sqrt{\frac{m}{k} }](https://tex.z-dn.net/?f=T%20%3D%202%5Cpi%20%5Csqrt%7B%5Cfrac%7Bm%7D%7Bk%7D%20%7D)
where;
T is the period oscillation
m is mass of the spring
k is the spring constant
![T = 2\pi \sqrt{\frac{m}{k} } \\\\k = \frac{m*4\pi ^2}{T^2} \\\\k = \frac{4.1*4*(3.142^2)}{(0.13^2)} \\\\k = 9580.088 \ N/m\\\\](https://tex.z-dn.net/?f=T%20%3D%202%5Cpi%20%5Csqrt%7B%5Cfrac%7Bm%7D%7Bk%7D%20%7D%20%5C%5C%5C%5Ck%20%3D%20%5Cfrac%7Bm%2A4%5Cpi%20%5E2%7D%7BT%5E2%7D%20%5C%5C%5C%5Ck%20%3D%20%5Cfrac%7B4.1%2A4%2A%283.142%5E2%29%7D%7B%280.13%5E2%29%7D%20%5C%5C%5C%5Ck%20%3D%209580.088%20%5C%20N%2Fm%5C%5C%5C%5C)
Now, determine the amplitude of oscillation, A;
![E = \frac{1}{2} kA^2](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20kA%5E2)
where;
E is the energy of the spring
k is the spring constant
A is the amplitude of the oscillation
![E = \frac{1}{2} kA^2\\\\2E = kA^2\\\\A^2 = \frac{2E}{k} \\\\A = \sqrt{\frac{2E}{k} } \\\\A = \sqrt{\frac{2*3.8}{9580.088} }\\\\A = 0.0282 \ m\\\\A = 2.82 \ cm](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20kA%5E2%5C%5C%5C%5C2E%20%3D%20kA%5E2%5C%5C%5C%5CA%5E2%20%3D%20%5Cfrac%7B2E%7D%7Bk%7D%20%5C%5C%5C%5CA%20%3D%20%5Csqrt%7B%5Cfrac%7B2E%7D%7Bk%7D%20%7D%20%5C%5C%5C%5CA%20%3D%20%20%5Csqrt%7B%5Cfrac%7B2%2A3.8%7D%7B9580.088%7D%20%7D%5C%5C%5C%5CA%20%3D%200.0282%20%5C%20m%5C%5C%5C%5CA%20%3D%202.82%20%5C%20cm)
Therefore, the amplitude of the oscillation is 2.82 cm