Earth revolving around the sun occurs at approximately one degree per day
Downward force acting on the ball is 19.6N
Net force acting on the ball is 1960V N
<u>Explanation:</u>
<u />
Given:
Mass of the ball, m = 2kg
Density of ball, σ = 800 kg/m³
Density of water, ρ = 1000 kg/m³
Downward force acting by the ball in the vessel = mg
where, g = 9.8m/s²
F = 2 X 9.8
F = 19.6N
Net force acting on the ball:
Fnet = (ρ - σ) Vg
where,
V is the volume of water
Fnet = (1000 - 800) V X 9.8
Fnet = 1960V N
If the volume is known, then substitute the value of V to find the net force.
Thus, Downward force acting on the ball is 19.6N
Net force acting on the ball is 1960V N
Parfocal is the term used to describe a microscope that maintains focus when the objective lenses are replaced.
<h3>
What is the name of the objective lens ?</h3>
For observing minute features within a specimen sample, a high-powered objective lens, often known as a "high dry" lens, is perfect. You can see a very detailed image of the specimen on your slide thanks to the 400x total magnification that a high-power objective lens and a 10x eyepiece provide.
The four objective lenses on your microscope are for scanning (4x), low (10x), high (40x), and oil immersion (100x).
The first-stage lens used to create a picture from electrons leaving the specimen is referred to as the "objective lens." The objective lens is the most crucial component of the imaging system since the quality of the images is determined by how well it performs (resolution, contrast, etc.,).
To learn more than objective lens , visit
brainly.com/question/17307577
#SPJ4
Answer:
Electromagnetic waves have crests and troughs similar to those of ocean waves. The distance between crests is the wavelength. The shortest wavelengths are just fractions of the size of an atom, while the longest wavelengths scientists currently study can be larger than the diameter of our planet!
Explanation:
hope it's helps u ...........!