The diagram can be redrawn as,
The value of x and y can be determined as,
![\begin{gathered} \tan C=\frac{AB}{BC} \\ \tan 45^{\circ}=\frac{x}{7\sqrt[]{2}} \\ x=7\sqrt[]{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctan%20C%3D%5Cfrac%7BAB%7D%7BBC%7D%20%5C%5C%20%5Ctan%2045%5E%7B%5Ccirc%7D%3D%5Cfrac%7Bx%7D%7B7%5Csqrt%5B%5D%7B2%7D%7D%20%5C%5C%20x%3D7%5Csqrt%5B%5D%7B2%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} \cos C=\frac{BC}{AC} \\ \cos 45^{\circ}=\frac{7\sqrt[]{2}}{y} \\ y=14 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20C%3D%5Cfrac%7BBC%7D%7BAC%7D%20%5C%5C%20%5Ccos%2045%5E%7B%5Ccirc%7D%3D%5Cfrac%7B7%5Csqrt%5B%5D%7B2%7D%7D%7By%7D%20%5C%5C%20y%3D14%20%5Cend%7Bgathered%7D)
Thus, option (D) is the correct solution.
Answer:
Step-by-step explanation:
It is given that in △ABC, ∠ABC=90°, BH is an altitude and AB=9 and AC=12, thus using the Pythagoras theorem in △ABC, we get





Now, From ΔABC and ΔHBC, we have
∠ABC=∠BHC(each90)
∠ACB=∠HCB (Common)
By AA similarity, ΔABC is similar to ΔHBC.
Thus, using the similarity condition, we get



Answer:
B. 1.82n
Step-by-step explanation:
Expression given: n + n - 0.18n
Adding n+n gives '2n'
then subtracting 0.18n from 2n gives= 1.82 n
Therefore,
n + n - 0.18n=0.18n