f(x) = {(1,3), (1,5), (1,7), (1,9)}
Domain = 1, 1, 1, 1
Range = 3, 5, 7, 9
The given inequality holds for the open interval (2.97,3.03)
It is given that
f(x)=6x+7
cL=25
c=3
ε=0.18
We have,
|f(x)−L| = |6x+7−25|
= |6x−18|
= |6(x−3)|
= 6|x−3|
Now,
6|x−3| <0.18 then |x−3|<0.03 ----->−0.03<x-3<0.03---->2.97<x<3.03
the given inequality holds for the open interval (2.97,3.03)
For more information on inequality click on the link below:
brainly.com/question/11613554
#SPJ4
Although part of your question is missing, you might be referring to this full question: For the given function f(x) and values of L,c, and ϵ0, find the largest open interval about c on which the inequality |f(x)−L|<ϵ holds. Then determine the largest value for δ>0 such that 0<|x−c|<δ→|f(x)−|<ϵ.
f(x)=6x+7,L=25,c=3,ϵ=0.18
.
The slope of the line is three
Answer:
Step-by-step explanation: Do 9 times 9 times 9 then subtract 52 from it you will get 531,389 :> happy to help!