Answer:
The molarity of the solution is 7.4 mol/L
Explanation:
From the question above
0.400 ml of water contains 1.00 g of hydrochloride form of cocaine
Therefore 1000 ml of water will contain x g of hydrochloride form of cocaine
x = 1000 / 0.400
x = 2500 g
2500g of hydrochloride form of cocaine is present in 1000 ml of water.
Mole of hydrochloride form of cocaine = mass /molar mass of hydrochloride
Mole of hydrochloride form of cocaine = 2500/339.8
= 7.4 mol
Molarity = mol/ volume in liter (L)
molarity = 7.4 /1
Molarity = 7.4 mol/L
Answer:
Explanation:
1) a, b) A <em>solution</em><em> is a homogeneous mixture of two or more substances</em>. The <em>solute</em><em> is the substance present in a smaller amount</em>, and the <em>solvent</em><em> is the substance present in a larger amount. </em>
c) <em>A </em><em>saturated solution</em><em> contains the maximum amount of a solute that will dissolve in a given solvent at a specific temperature. </em>
2) See picture in attachment.
Answer:
Explanation:
Chlorine has electronic configuration of 2 , 8 , 7
In n = 3 there are 7 electrons out of which 2 are in s , and 5 are in p . But out of 5 electrons in p , one electron jumps into d orbital . so the electronic configuration becomes as follows
= 7

These orbitals like sp³d hybridise to form 7 degenerate orbitals out of which 2 orbitals contain electrons in pairs and rest three are singly occupied by electrons.( unpaired electrons )
Answer:
A. The equilibrium constant is very large
Explanation:
The equilibrium constant value is the ratio of the concentrations of the products over the reactants. When a chemical reaction goes to completion, that means that all the reactant has turned into products. As the equilibrium constant defines, it is the ratio of the product to the reactant. So at the final stage of the chemical reaction, the equilibrium constant will be very large.
<span>The correct option is C. The concentration of phosphate inside the cytosol is already greater than the concentration of phosphate in the surrounding fluid, yet, the cell still want to move more phosphate into the cell. To do this, energy is needed to move the phosphate ions against the concentration gradient, so the type of transportation requires is ACTIVE TRANSPORT.</span><span />