Answer: Option (d) is the correct answer.
Explanation:
When a hydrogen atom comes in contact with an electronegative atom then it results in the formation of a chemical bond.
More is the electronegativity of combining atom, more stronger will be the bond with hydrogen atom. As a result, the compound formed will not easily give up hydrogen atom upon dissociation.
Whereas less is the electronegativity of atom combining with hydrogen atom, easily it will donate the hydrogen atom upon dissociation.
Since, out of the given option sulfur (S) atom has low electronegativity as compared to oxygen and nitrogen atom.
Hence,
will easily donate hydrogen atom.
Thus, we can conclude that
molecule would be the best hydrogen bond donor.
I think the effect of increasing temperature would be; the equilbrium will shift back wards. Increase in temperature favors backward reaction since the forward reaction is exothermic and the backward reaction is endothermic. Therefore, the equilibrium will shift back wards, and there will be more reactants (H2 and Cl2) compared to the products
Answer:
true
Explanation:
A single replacement reaction is a reaction that an element is displaced with another element in a compound
A+BC------AC+B
Mg+2HCl-------MgCl2+H2
(I know this is late so hopefully other people find it helpful)
<u>Answer</u>: Solid Cu
Since this is a <u>voltaic cell</u>:
<u>Copper</u> is the cathode, therefore having a positive charge.
<u>Zinc</u> is the anode, therefore having a negative charge.
(Also, I took the exam and it's correct; good luck everyone!)
Answer:
<u><em>Science.</em></u>
<u><em /></u>
Science seems like the most logical answer.