Answer: 14x^2-93xy+60y^2 Hope that helps!
Step-by-step explanation:
1. Expand by distributing terms
(20x-12y)(x-4y)-(3x-4y)(2x+3y)
2. Use the Foil method:(a+b)(c+d)= ac+ad+bc+bd
20x^2-80xy-12yx+48y^2-(3x-4y)(2x+3y)
3. Use the Foil method : (a+b)(c+d)= ac+ad+bc+bd
20x^2-80xy-12yx+48y^2-(6x^2+9xy-8yx-12y^2)
4. Remove parentheses 20x^2-80xy-12yx+48y^2-6x^2-9xy+ 8yx+12y^2
5. Collect like terms (20x^2-6x^2)+(-80xy-12xy-9xy+8xy)+(48y^2+12y^2)
6. Simplify.
And your answer would be 14x^2-93xy+60y^2
Add 7 to each side of the inequality.
w < 28.
Answer:
A' would be at (0,-4)
B' would be at (-2,1)
C' would be at (-2,-3)
Step-by-step explanation:
A' would be at (0,-4)
B' would be at (-2,1)
C' would be at (-2,-3)
(a) Take the Laplace transform of both sides:


where the transform of
comes from
![L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)](https://tex.z-dn.net/?f=L%5Bty%27%28t%29%5D%3D-%28L%5By%27%28t%29%5D%29%27%3D-%28sY%28s%29-y%280%29%29%27%3D-Y%28s%29-sY%27%28s%29)
This yields the linear ODE,

Divides both sides by
:

Find the integrating factor:

Multiply both sides of the ODE by
:

The left side condenses into the derivative of a product:

Integrate both sides and solve for
:


(b) Taking the inverse transform of both sides gives
![y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right]](https://tex.z-dn.net/?f=y%28t%29%3D%5Cdfrac%7B7t%5E2%7D2%2BC%5C%2CL%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7Be%5E%7Bs%5E2%7D%7D%7Bs%5E3%7D%5Cright%5D)
I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that
is one solution to the original ODE.

Substitute these into the ODE to see everything checks out:

Answer:
Step-by-step explanation:
use Area=pi * 
diameter is 2 * r
so r = 5
pi *
= 78.5398
Area * height = volume
78.5398 * 17 = 1335.18
the cylinder holds about 1335 