Answer:
m=a/x+Q
Step-by-step explanation:
Q=m-a/x
To solve this we need to isolate m so we will bring -a/x to the other side of the equal sign so it will become positive i.e. ax now will be written as a/x+Q=m
in other wards m=a/x+Q
<span>The smaller share is equal to 9.51 rounded to 2 decimal places.
</span>
First, you must understand the question. what % of 60 is 15, so I would write an equation to express this.
15 = 60x
From there, solve for x, so Divide by 60 on each side. The answer is 1/4, or 25%
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
The price for each cd equals 9.95 so I would estimate it to 10$