Any of the 11 man can be chosen, and combined with any of the 8 women.
Assume we select man1. The selected committee can be:
(m1,w1), (m1,w2), (m1,w3), (m1,w4), (m1,w5), (m1,w6), (m1,w7), (m1,w8),
so there are 8 committees selections with man1 in them.
we could repeat the same procedure for the remaining 10 men, and get 8 committees where each of them is a member.
so there are 11*8=88 ways of choosing 1 man and 1 woman.
Answer: 88
-10.
(11-7x)^1/4 =3
(11-7x)=81
-7x=70
X=-10
Answer:
22.4
Step-by-step explanation:
Answer:
i can't do that I don't know how I'm sorry
Answer: 6000+200+10+9
Step-by-step explanation:
The ones place multiplies by 1 so 9*1=9
The tens place multiplies by 10 so 10*1=10
The hundreds place multiply by 100 so 100+2=100
The thousands place multiply by 1000 so 1000*6=6000
Hope This Helps!!!