Answer:
m<1=115°(Alternative interior Angles)
Think of the equation of a linear function:
Recall y = mx + b for vertical shifts, we just add or subtract from 'b' and that will move the line up or down accordingly.. However, for horizontal shifts, we will need to add or subtract from 'x'. Note that the slope or 'm' stays the same for each type of shift.
Now that we know how the shifts occur, we might consider a different form of the equation for a linear function: y = a(x - h) + k here the 'a' is just our slope, 'k' is our original y intercept, and 'h' will represent the amount of horizontal shift.
So to get the desired transformations of a horizontal shift to the left of 8 and a vertical shift of down 3 from our original function y = x, we can make the following changes: y = (x + 8) - 3 Now you might be confused with how we got the 'x + 8'.. Let's consider values of 'h'. For positive values of h, the result will be a shift to the right and for negative values of h the result will be a shift to the left. So since we want a shift to the left we need to use a '-8' and when we substitute that into our new form, y = (x - h) + k you can see the sign change.
Now we can simplify of course and get the final equation: y = x + 5 or in function form f(x) = x + 5
See the picture attached to better understand the problem
we know that
If two secant segments are drawn to a <span>circle </span><span>from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment.
</span>so
jl*jk=jn*jm------> jn=jl*jk/jm
we have
<span>jk=8,lk=4 and jm=6
</span>jl=8+4----> 12
jn=jl*jk/jm-----> jn=12*8/6----> jn=16
the answer isjn=16
Answer:
Option D is the correct answer.
Step-by-step explanation:
Initial height = 4 feet
Given that the height of the tree increased by a constant amount each year for the next 6 years. At the end of the 6th year, the tree was 1/5th taller than it was at the end of the 4th year.
Let the rate of growing each year be g.
After 6 years height of tree = 4 + 6g
After 4 years height of tree = 4 + 4g
At the end of the 6th year, the tree was 1/5th taller than it was at the end of the 4th year.
That is

Option D is the correct answer.