In order to determine the correct answer, it would be helpful to set up equations. We do as follows:
Let x = students
y = adults
x + y = 215
.50x + 2y = 250
SOlving simultaneously, we have:
x = 120 students
y = 95 adults
Hope this answers the question. Have a nice day.
A ) cos² x · 1 / sin x - 1 / sin x = - sin x
cos² x - 1 / sin x = - sin x
- sin² x / sin x = - sin x
- sin x = - sin x ( correct )
B ) sin x ( cos x / sin x + sin x / cos x ) = 1 / cos x
sin x · ( cos² x + sin²x ) / sin x cos x = 1 / cos x
sin x · 1 / sin x cos x = 1 / cos x
1 / cos x = 1 / cos x ( correct )
C ) cos² x - sin² x = 1 - 2 sin² x
1 - sin² x - sin² x = 1 - 2 sin² x
1 - 2 sin² x = 1 - 2 sin² x ( correct )
D ) 1/sin²x + 1/ cos²x = 1
cos²x + sin² x / sin² x cos² x = 1
1 / cos² x sin² x = 1
cos²x sin² x ≠ 1
Answer: D ) is not an identity.
9 because if you subtract 17 from 8 you will get 9 I hope this works :)
N>8 but with the little line underneath.
So choice two