Let A represent amount of Type A coffee pounds used.
Let B represent amount of Type B coffee pounds used
A + B = 156
B = 156 - A
A = 156 - B
5.80A + 4.65B = 826.60
580 (156 - B) + 4.65B - 826.60 = 0
904.8 - 5.80B + 4.65B - 826.60 = 0
904.8 - 1.15B - 826.60 = 0
78.2 - 1.15B = 0
78.2/1.15 = 1.15B/1.15
68 = B
B = 68 pounds of Type B coffee
There's many more steps you can take to check and etc but am too lazy to put down sorry.
The correct choice would be 128.
If there are 6 options and the person can pick any number of toppings, we need to know the number of subsets that can be formed with 6. That would be 2^6 or 64.
Since there is a pan or hand-tossed option, we need to multiply 64 by 2 to find the total.
64 x 2 = 128
Answer:
○ -1
Step-by-step explanation:
Looking closely at this piecewise function, when the line on the left-hand side intersects at <em>-</em><em>3</em><em> </em><em>=</em><em> </em><em>y</em><em>,</em><em> </em><em>x</em><em> </em>is -1.
I hope this helps, and as always, I am joyous to assist anyone at any time.
Answer:
+3.8 to each side
Step-by-step explanation:
Given:
Right triangle
To find:
The six trigonometric functions of θ
Solution:
Hypotenuse = 18
Adjacent side to θ = 10
Opposite side to θ = ?
Using Pythagoras theorem:
![\text {Hypotenuse}^2 = \text{adjacent}^2+\text{opposite}^2](https://tex.z-dn.net/?f=%5Ctext%20%7BHypotenuse%7D%5E2%20%3D%20%5Ctext%7Badjacent%7D%5E2%2B%5Ctext%7Bopposite%7D%5E2)
![18^2 =10^2+\text{opposite}^2](https://tex.z-dn.net/?f=18%5E2%20%3D10%5E2%2B%5Ctext%7Bopposite%7D%5E2)
![324=100+\text{opposite}^2](https://tex.z-dn.net/?f=324%3D100%2B%5Ctext%7Bopposite%7D%5E2)
Subtract 100 from both sides.
![224=\text{opposite}^2](https://tex.z-dn.net/?f=224%3D%5Ctext%7Bopposite%7D%5E2)
Taking square root on both sides.
![4\sqrt{14}=\text{opposite}](https://tex.z-dn.net/?f=4%5Csqrt%7B14%7D%3D%5Ctext%7Bopposite%7D)
Using trigonometric ratio formula:
![$\sin\theta =\frac{\text{opposite }}{\text{hypotenuse}}](https://tex.z-dn.net/?f=%24%5Csin%5Ctheta%20%3D%5Cfrac%7B%5Ctext%7Bopposite%20%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D)
![$\sin\theta =\frac{4\sqrt{14} }{18}](https://tex.z-dn.net/?f=%24%5Csin%5Ctheta%20%3D%5Cfrac%7B4%5Csqrt%7B14%7D%20%7D%7B18%7D)
![$\csc\theta =\frac{\text{hypotenuse}}{\text{opposite }}](https://tex.z-dn.net/?f=%24%5Ccsc%5Ctheta%20%3D%5Cfrac%7B%5Ctext%7Bhypotenuse%7D%7D%7B%5Ctext%7Bopposite%20%7D%7D)
![$\csc\theta =\frac{18}{4\sqrt{14} }](https://tex.z-dn.net/?f=%24%5Ccsc%5Ctheta%20%3D%5Cfrac%7B18%7D%7B4%5Csqrt%7B14%7D%20%7D)
![$\cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }}](https://tex.z-dn.net/?f=%24%5Ccos%20%5Ctheta%3D%5Cfrac%7B%5Ctext%20%7B%20adjacent%20side%20%7D%7D%7B%5Ctext%20%7B%20hypotenuse%20%7D%7D)
![$\cos \theta=\frac{10}{18}](https://tex.z-dn.net/?f=%24%5Ccos%20%5Ctheta%3D%5Cfrac%7B10%7D%7B18%7D)
![$\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent side }}](https://tex.z-dn.net/?f=%24%5Csec%20%5Ctheta%3D%5Cfrac%7B%5Ctext%20%7B%20hypotenuse%20%7D%7D%7B%5Ctext%20%7B%20adjacent%20side%20%7D%7D)
![$\sec \theta=\frac{18 }{10}](https://tex.z-dn.net/?f=%24%5Csec%20%5Ctheta%3D%5Cfrac%7B18%20%7D%7B10%7D)
![$\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}](https://tex.z-dn.net/?f=%24%5Ctan%20%5Ctheta%3D%5Cfrac%7B%5Ctext%20%7B%20opposite%20side%20%7D%7D%7B%5Ctext%20%7B%20adjacent%20side%20%7D%7D)
![$\tan \theta=\frac{4\sqrt{14} }{10}](https://tex.z-dn.net/?f=%24%5Ctan%20%5Ctheta%3D%5Cfrac%7B4%5Csqrt%7B14%7D%20%7D%7B10%7D)
![$\cot \theta=\frac{\text { adjacent side }}{\text { opposite side }}](https://tex.z-dn.net/?f=%24%5Ccot%20%5Ctheta%3D%5Cfrac%7B%5Ctext%20%7B%20adjacent%20side%20%7D%7D%7B%5Ctext%20%7B%20opposite%20side%20%7D%7D)
![$\cot \theta=\frac{10}{4\sqrt{14} }](https://tex.z-dn.net/?f=%24%5Ccot%20%5Ctheta%3D%5Cfrac%7B10%7D%7B4%5Csqrt%7B14%7D%20%7D)