Answer:
* Elimination; a coefficient in Equation I is an integer multiple of a coefficient in Equation II.
* Elimination; a coefficient in Equation II is an integer multiple of a coefficient in Equation I.
Step-by-step explanation:
Equation I: 4x − 5y = 4
Equation II: 2x + 3y = 2
These equation can only be solved by Elimination method
Where to Eliminate x :
We Multiply Equation I by a coefficient of x in Equation II and Equation II by the coefficient of x in Equation I
Hence:
Equation I: 4x − 5y = 4 × 2
Equation II: 2x + 3y = 2 × 4
8x - 10y = 20
8x +12y = 6
Therefore, the valid reason using the given solution method to solve the system of equations shown is:
* Elimination; a coefficient in Equation I is an integer multiple of a coefficient in Equation II.
* Elimination; a coefficient in Equation II is an integer multiple of a coefficient in Equation I.
Hi student, let me help you out! :)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We are asked to find the two integers, given that they are consecutive, and their sum is 65.

- Consecutive integers are right next to each other, like 12 and 13. or 65 and 66.
Let the first integer be x, and let the second integer be x+1.
Their sum is 65. Let's set up our equation:

Combine like terms:

Subtract 1 from both sides of the equal sign:

Divide both sides by 2:

To find the second integer, subtract the first integer from the sum of the two integers:


The integers are: 33 and 32.
Hope it helps you out! :D
Ask in comments if any queries arise.
#StudyWithBrainly
~Just a smiley person helping fellow students :)
Answer:
which p? there isn't any p in above equation
Answer:
180 - 36? I dont exactly remember how to do this
Step-by-step explanation:
Sorry if its not right