I think it is the last one.
Both triangles area:
4.2 x 8.2 = 34.44
you don’t need to divide by two cause there’s two triangles anyways.
also, you get 8.2 by subtracting the total length by the top length. (13.5-5.3)
rectangle:
4.2 x 5.3 = 22.26
the total area is 56.7cm squared
The measure of ∠BAF is 54°.
Solution:
DF and CE are intersecting lines.
m∠EAF = 72° and AB bisects ∠CAF.
∠EAF and ∠DAC are vertically opposite angles.
Vertical angle theorem:
<em>If two lines are intersecting, then vertically opposite angles are congruent.</em>
∠DAC ≅ ∠EAF
m∠DAC = 72°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠DAE + m∠EAF = 180°
m∠DAE + 72° = 180°
Subtract 72° from both sides.
m∠DAE = 108°
∠CAF and ∠DAE are vertically opposite angles.
⇒ m∠CAF = m∠DAE
⇒ m∠CAF = 108°
AB bisects ∠CAF means ∠CAB = ∠BAF
m∠CAB + m∠BAF = 108°
m∠BAF + m∠BAF = 108°
2 m∠BAF = 108°
Divide by 2 on both sides, we get
m∠BAF = 54°
Hence the measure of ∠BAF is 54°.
Answer: 0.206
Step-by-step explanation: the probability of employees that needs corrective shoes are =8%= 8/100 = 0.08
Probability of employees that needs major dental work = 15% = 15/100 = 0.15
Probability of employees that needs both corrective shoes and dental work = 3% = 3/100 = 0.03
The probability that an employee will need either corrective shoes or major dental work = (Probability an employee will need correct shoes and not need dental work) or (probability that an employee will need dental work or not corrective shoes)
Probability of employee not needing corrective shoes = 1 - 0.08 = 0.92
Probability of employee not needing dental work = 1 - 0.15 = 0.85
The probability that an employee will need either corrective shoes or major dental work = (0.08×0.85) + (0.15×0.92) = 0.068 + 0.138 = 0.206 = 20.6%
The probability that an employee will need either corrective shoes or dental work = 0.206.
Please note that the word "either" implies that we must choose one of the two options (corrective shoes or dental work) and not both.
Answer and working out attached, hope this helps