Okay so I am going to summarize the work out process because its a lot to
Here we go
1/3 (t) + 3/4 - 2/4 - t = ?
1/2 (simplify )
(1/3 (T)+3/4 - 1/2 - (t) = ?
t (2) / 2
1 - 2(t) / 2 = ?
3/4 (simplify this )
1/3(t)+ 3/4 - [1 - 2(t) / 2 = ?
1/3 (this is re last one you have to simplify)
L (Denominator): 3
R (Denominator): 4
L: [L.C.M] : 4
R: [L.C.M] : 3
Basically , we just switched the dominators around
So, Therefore The of t is -3/16
T = -3/16
Answer:
0.0025551
Step-by-step explanation:
Given that:
Mean (m) = 40000
Standard deviation (s) = 2500
P(x < 33,000) :
USing the relation to obtain the standardized score (Z) :
Z = (x - m) / s
Z = (33000 - 40000) / 2500 = - 2.8
p(Z < -2.8) = 0.0025551 ( Z probability calculator)
Probability of Tyre wagering out before mileage limit is reached = 0.0025551
Answer:
Using y = mx + c
slope = -17+5/3-1 = -12/2 = -6
Using point (1 , - 5)
y + 5 = -6(x - 1)
y + 5 = - 6x + 6
y = - 6x + 6 - 5
y = - 6x + 1
Hope this helps.
Whats the radius
of the circumfrence
Answer:
P(2) = 4
Step-by-step explanation:
P(X) = -2X4 + 4X3 - X + 6
Use the remainder theorem to find quotient and remainder and the value of P(2)
First add in any missing exponents: P(x) = -2x4 + 4x3 + 0x2 -x + 6
Write all the coefficients in a line (including the constant) with the number being solved for off to the left:
Bring down the first coefficient (-2), multiply it by the term in question (2), carry the product up under
the 2nd coefficient and then add down (4-4=0), carry up the sum and repeat process across. The last
sum is the answer for P(2)
(2) -2 4 0 -1 6
-4 0 0 -2
__________________
-2 0 0 -1 4
P(2) = 4
check the answer: P(2) = -2(24) + 4(23) -2 + 6 = -2(16) +4(8) + 4 = 4 Our answer is correct
The quotient is what we would bet by dividing the original equation by the polynomial (x-2). The
answer is given by the bottom numbers which will begin an one lower exponent than the original.
Quotient is: -2x3 + 0x2 + 0x -1 = 2x3 - 1
The remainder is: 4/(x-2)