1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ede4ka [16]
2 years ago
14

I NEED HELP ASAP 6th GRD WORK HELPPP

Mathematics
1 answer:
tatuchka [14]2 years ago
3 0

Answer:

28cm

Step-by-step explanation:

A=a+b

2h=4+10

2·4=  28cm

You might be interested in
Find the circumference in inches
Alborosie

Answer:

Step-by-step explanation:

2×radius with pi, 28*pi=28 pi or 87.92

3 0
2 years ago
Read 2 more answers
Solve the simultaneous equation<br> 4x-y=9 <br> 2x-3y= -23
MrMuchimi

Answer:

x = 5

y = 11

Step-by-step explanation:

y = 4x - 9

2x -3(4x - 9) = -23

2x - 12x + 27 = -23

-10x = -23 -27

-10x = -50

minus cancels out

x = 5

y = 4(5) -9

y = 20 - 9

y = 11

4 0
2 years ago
Match each vector operation with its resultant vector expressed as a linear combination of the unit vectors i and j.
Cloud [144]

Answer:

3u - 2v + w = 69i + 19j.

8u - 6v = 184i + 60j.

7v - 4w = -128i + 62j.

u - 5w = -9i + 37j.

Step-by-step explanation:

Note that there are multiple ways to denote a vector. For example, vector u can be written either in bold typeface "u" or with an arrow above it \vec{u}. This explanation uses both representations.

\displaystyle \vec{u} = \langle 11, 12\rangle =\left(\begin{array}{c}11 \\12\end{array}\right).

\displaystyle \vec{v} = \langle -16, 6\rangle= \left(\begin{array}{c}-16 \\6\end{array}\right).

\displaystyle \vec{w} = \langle 4, -5\rangle=\left(\begin{array}{c}4 \\-5\end{array}\right).

There are two components in each of the three vectors. For example, in vector u, the first component is 11 and the second is 12. When multiplying a vector with a constant, multiply each component by the constant. For example,

3\;\vec{v} = 3\;\left(\begin{array}{c}11 \\12\end{array}\right) = \left(\begin{array}{c}3\times 11 \\3 \times 12\end{array}\right) = \left(\begin{array}{c}33 \\36\end{array}\right).

So is the case when the constant is negative:

-2\;\vec{v} = (-2)\; \left(\begin{array}{c}-16 \\6\end{array}\right) =\left(\begin{array}{c}(-2) \times (-16) \\(-2)\times(-6)\end{array}\right) = \left(\begin{array}{c}32 \\12\end{array}\right).

When adding two vectors, add the corresponding components (this phrase comes from Wolfram Mathworld) of each vector. In other words, add the number on the same row to each other. For example, when adding 3u to (-2)v,

3\;\vec{u} + (-2)\;\vec{v} = \left(\begin{array}{c}33 \\36\end{array}\right) + \left(\begin{array}{c}32 \\12\end{array}\right) = \left(\begin{array}{c}33 + 32 \\36+12\end{array}\right) = \left(\begin{array}{c}65\\48\end{array}\right).

Apply the two rules for the four vector operations.

<h3>1.</h3>

\displaystyle \begin{aligned}3\;\vec{u} - 2\;\vec{v} + \vec{w} &= 3\;\left(\begin{array}{c}11 \\12\end{array}\right) + (-2)\;\left(\begin{array}{c}-16 \\6\end{array}\right) + \left(\begin{array}{c}4 \\-5\end{array}\right)\\&= \left(\begin{array}{c}3\times 11 + (-2)\times (-16) + 4\\ 3\times 12 + (-2)\times 6 + (-5) \end{array}\right)\\&=\left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle\end{aligned}

Rewrite this vector as a linear combination of two unit vectors. The first component 69 will be the coefficient in front of the first unit vector, i. The second component 19 will be the coefficient in front of the second unit vector, j.

\displaystyle \left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle = 69\;\vec{i} + 19\;\vec{j}.

<h3>2.</h3>

\displaystyle \begin{aligned}8\;\vec{u} - 6\;\vec{v} &= 8\;\left(\begin{array}{c}11\\12\end{array}\right) + (-6) \;\left(\begin{array}{c}-16\\6\end{array}\right)\\&=\left(\begin{array}{c}88+96\\96 - 36\end{array}\right)\\&= \left(\begin{array}{c}184\\60\end{array}\right)= \langle 184, 60\rangle\\&=184\;\vec{i} + 60\;\vec{j} \end{aligned}.

<h3>3.</h3>

\displaystyle \begin{aligned}7\;\vec{v} - 4\;\vec{w} &= 7\;\left(\begin{array}{c}-16\\6\end{array}\right) + (-4) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}-112 - 16\\42+20\end{array}\right)\\&= \left(\begin{array}{c}-128\\62\end{array}\right)= \langle -128, 62\rangle\\&=-128\;\vec{i} + 62\;\vec{j} \end{aligned}.

<h3>4.</h3>

\displaystyle \begin{aligned}\;\vec{u} - 5\;\vec{w} &= \left(\begin{array}{c}11\\12\end{array}\right) + (-5) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}11-20\\12+25\end{array}\right)\\&= \left(\begin{array}{c}-9\\37\end{array}\right)= \langle -9, 37\rangle\\&=-9\;\vec{i} + 37\;\vec{j} \end{aligned}.

7 0
3 years ago
5(2+ 3n) equals what
kati45 [8]

Answer: The Answer To Your Question Is 25n

Step-by-step explanation: 5(2+3n)

1. Do the Parenthesis: (2+3n)= 5n

2. Multiply: 5 times 5n= 25n

HOPE I WAS HELPFUL I KNOW THE ANSWER IS RIGHT......

8 0
3 years ago
On Saturday morning, Malik earned $32. By the end of the afternoon he had earned a total of $63. Which equation represents this
aleksley [76]
X+ 32= 63 that is correct answer
6 0
3 years ago
Other questions:
  • What's 2x2x2x2 in standard form
    9·2 answers
  • What is the x and y intercept for this equation
    6·1 answer
  • When sizes of pizzas are quoted in inches, the number quoted is the diameter of the pizza. A restaurant advertises an 8-{\rm inc
    7·1 answer
  • Greg was dividing 0.56 by 0.64
    10·1 answer
  • Which of the system has only one solution?
    5·1 answer
  • Let me know the answer plz
    13·1 answer
  • Solve x 11, 13, 21,13
    7·1 answer
  • Does (-24,-12) and (-15,-9) line pass through point (18,2)?
    10·2 answers
  • Drag the tiles to the correct boxes to complete the pairs.
    6·1 answer
  • Solve - 3x^2 + 2x + 4 = -x- 3 by writing a linear-quadratic system and solving using the intersection feature of a graphing calc
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!