Answer:
1. Equivalence point
2. Direct titration
3. Primary standard
4. Titrand
5. Back titration
6. Standard solution
7. Titrant
8. Indirect titration
9. End point
10. Indicator
Explanation:
1. The equivalence point is the tiration point at which the quantity or moles of the added titrant is sufficient or equal to the quantity or moles of the analyte for the neutralization of the solution of the analyte.
2. Direct titration is a method of quantitatively determining the contents of a substance
3. A primary standard is an easily weigh-able representative of the mount of moles contained in a substance
4. A titrand is the substance of unknown concentration which is to be determined
5. The titration method that uses a given amount of an excess reagent to determine the concentration of an analyte is known as back titration
6. A standard solution is a solution of accurately known concentration
7. A titrant is a solution that has a known concentration and which is titrated unto another solution to determine the concentration of the second solution
8. Indirect titration is the process of performing a titration in athe reverse order
9. The end point is the point at which the indicator indicates that the equivalent quantities of the reagents required for a complete reaction has been added
10 An indicator is a compound used to visually determine the pH of a solution.
Answer:
Explanation:
photosynthesis
the given chemical reaction is photosynthesis.
During photosynthesis carbon dioxide absorbed by plants reacts with water in presence of sunlight to give glucose and oxygen.
I Think that the answer is 15.2096 Kilograms, but I might be wrong.
Answer:
This part require data such as Avogadro's number and the molar mass of water. But first, let's find the mass of water in the specified volume by making use of the density formula:
Density = mass/volume
1 g/mL = Mass/70 mL
Mass = 70 g
Each water contains 18 grams per mole, and each mole contains 6.022×10²³ molecules of water. Thus,
70 g * 1mole/18 g * 6.022×10²³ molecules/mole = 2.342×10²⁴ molecules of water
Explanation:
I believe the answer is D