To determine the mass of xenon tetrafluoride, we need to know first the number of fluorine atoms present in <span>oxygen difluoride. We need to convert first the mass into moles then make use of the relation of the elements from the chemical formula. Then, use the avogadro's number to convert it to number of atoms. Then, we do the reverse of the steps above but this time for </span><span>xenon tetrafluoride.
25.0 g OF2 ( 1 mol / 54 g ) ( 2 mol F / 1 mol OF2 ) ( 6.022 x10^23 atoms F / 1 mol F ) ( 1 mol / 6.022x10^23 atoms) ( 1 mol XeF4 / 4 mol F ) (207.3 g / 1 mol XeF4) = 47.99 g XeF4</span>
the answer is B. Atmosphere
The chemical balanced equation for the given question is this:
2AL[NO3]3 + 3CaO = AL2O3 + 3Ca[NO3]2.
So, one of the product formed is AI2O3. The other product is Ca[NO3]2.
The reaction is a double replacement reaction.
The given complex ion is as follow,
[Ru (CN) (CO)₄]⁻
Where;
[ ] = Coordination Sphere
Ru = Central Metal Atom = <span>Ruthenium
CN = Cyanide Ligand
CO = Carbonyl Ligand
The charge on Ru is calculated as follow,
Ru + (CN) + (CO)</span>₄ = -1
Where;
-1 = overall charge on sphere
0 = Charge on neutral CO
-1 = Charge on CN
So, Putting values,
Ru + (-1) + (0)₄ = -1
Ru - 1 + 0 = -1
Ru - 1 = -1
Ru = -1 + 1
Ru = 0
Result:
<span>Oxidation state of the metal species in each complex [Ru(CN)(CO)</span>₄]⁻ is zero.
Answer:
b. The number of electrons
Explanation:
A "neutral atom" has a <u>neutral charge</u>. This means that <em>its charge is equal to </em><em>zero. </em>In order for the charges to cancel out each other, the atom's <em>positive charge should be equal to the negative charge. </em>These being said, the number of electrons<em> (negatively-charged)</em> is then equal to the number of protons <em>(positively-charged). </em>Those atoms which are not neutral are called <em>"ions."</em> This means that they either have more or less electrons than the protons.