1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
2 years ago
8

Write the product as a sum: 14cos(39x)sin(19x)

Mathematics
1 answer:
charle [14.2K]2 years ago
4 0

Recall that

sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)

sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)

Adding these together gives

sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)

To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :

7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)

7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)

7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)

You might be interested in
Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (If an answer d
aliya0001 [1]

The Lagrangian

L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(x^4+y^4+z^4-13)

has critical points where the first derivatives vanish:

L_x=2x+4\lambda x^3=2x(1+2\lambda x^2)=0\implies x=0\text{ or }x^2=-\dfrac1{2\lambda}

L_y=2y+4\lambda y^3=2y(1+2\lambda y^2)=0\implies y=0\text{ or }y^2=-\dfrac1{2\lambda}

L_z=2z+4\lambda z^3=2z(1+2\lambda z^2)=0\implies z=0\text{ or }z^2=-\dfrac1{2\lambda}

L_\lambda=x^4+y^4+z^4-13=0

We can't have x=y=z=0, since that contradicts the last condition.

(0 critical points)

If two of them are zero, then the remaining variable has two possible values of \pm\sqrt[4]{13}. For example, if y=z=0, then x^4=13\implies x=\pm\sqrt[4]{13}.

(6 critical points; 2 for each non-zero variable)

If only one of them is zero, then the squares of the remaining variables are equal and we would find \lambda=-\frac1{\sqrt{26}} (taking the negative root because x^2,y^2,z^2 must be non-negative), and we can immediately find the critical points from there. For example, if z=0, then x^4+y^4=13. If both x,y are non-zero, then x^2=y^2=-\frac1{2\lambda}, and

xL_x+yL_y=2(x^2+y^2)+52\lambda=-\dfrac2\lambda+52\lambda=0\implies\lambda=\pm\dfrac1{\sqrt{26}}

\implies x^2=\sqrt{\dfrac{13}2}\implies x=\pm\sqrt[4]{\dfrac{13}2}

and for either choice of x, we can independently choose from y=\pm\sqrt[4]{\frac{13}2}.

(12 critical points; 3 ways of picking one variable to be zero, and 4 choices of sign for the remaining two variables)

If none of the variables are zero, then x^2=y^2=z^2=-\frac1{2\lambda}. We have

xL_x+yL_y+zL_z=2(x^2+y^2+z^2)+52\lambda=-\dfrac3\lambda+52\lambda=0\implies\lambda=\pm\dfrac{\sqrt{39}}{26}

\implies x^2=\sqrt{\dfrac{13}3}\implies x=\pm\sqrt[4]{\dfrac{13}3}

and similary y,z have the same solutions whose signs can be picked independently of one another.

(8 critical points)

Now evaluate f at each critical point; you should end up with a maximum value of \sqrt{39} and a minimum value of \sqrt{13} (both occurring at various critical points).

Here's a comprehensive list of all the critical points we found:

(\sqrt[4]{13},0,0)

(-\sqrt[4]{13},0,0)

(0,\sqrt[4]{13},0)

(0,-\sqrt[4]{13},0)

(0,0,\sqrt[4]{13})

(0,0,-\sqrt[4]{13})

\left(\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

5 0
3 years ago
A bike store sells scooters at a 54% markup. If the store bought each scooter for $29.25, what is the resale price to the neares
7nadin3 [17]

The purchasing price of the store = $29.25.

They want to resale it at 54% markup of the purchasing price.

54% of 29.25 = 0.54 × 29.25.

On multiplying 0.54 and 29.25, we get 15.795.

Resale price = The purchasing price + Markup

                      = 29.25 + 15.795.

On adding 29.25 and 15.795, we get 45.045.

We can round it to 45 to the nearest dollar.

<h3>Therefore, the resale price to the nearest dollar is $45.</h3>
5 0
3 years ago
Can someone help me with this :(
julia-pushkina [17]

Answer:

9

Step-by-step explanation:

6+x, when x = 3

6+(3)

6+3=9

5 0
2 years ago
Read 2 more answers
Saige's spaceship traveled 588 588588 kilometers ( km ) (km)left parenthesis, start text, k, m, end text, right parenthesis in 6
pshichka [43]

Answer:

The first ship has the same speed as Saige's ship while the second and third do not have the same speed.

Step-by-step explanation:

d = Distance traveled by Saige's spaceship = 588 km

t = Time taken = 60 seconds

Speed is given by

s=\dfrac{d}{t}\\\Rightarrow s=\dfrac{588}{60}\\\Rightarrow s=9.8\ \text{km/s}

The other ships

s=\dfrac{441}{45}=9.8\ \text{km/s}

s=\dfrac{215}{25}=8.6\ \text{km/s}

s=\dfrac{649}{110}=5.9\ \text{km/s}

So, the first ship has the same speed as Saige's ship while the second and third do not have the same speed.

8 0
2 years ago
Can someone pls help me with this problem
VLD [36.1K]

Answer:

Rule= Y × 10

or

X ÷ 10

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • A standard coffee mug has a capacity of 16 fluid ounces. If Annie needs to fill 26 mugs with coffee, how many total quarts of co
    10·2 answers
  • What is the difference? 405,000,000−1.7×108 2.35 2.35×1072.35×107 ​ 2.35×1082.35×108 ​ ​ 2.35×1092.35×109 ​
    14·1 answer
  • 1. A coin-operated drink machine was designed to discharge a mean of 7 ounces of coffee per cup. In a test of the machine, the d
    13·1 answer
  • PLEASE HELLLPPP!!!! WILL GET BRAINIEST!!
    15·1 answer
  • Math help please? &lt;3
    13·1 answer
  • Please help! x+25=100
    5·1 answer
  • What is the radius of a circle whose equation is (x + 5)2 + (y - 3)2 = 42?
    13·2 answers
  • Is x = 4 a solution to 2x - 6 + 4 = 14? Yes or no
    11·1 answer
  • 3)
    14·2 answers
  • Don’t understand the problem, need help ASAP!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!