The acceleration of a car that starts at 12.5 m/s and reaches 25.5 m/s in 5.00 seconds is 2.6m/s².
<h3>How to calculate acceleration?</h3>
The acceleration of a moving object can be calculated using the following formula:
a = (v - u)/t
Where;
- a = acceleration (m/s²)
- v = final velocity (m/s)
- u = initial velocity (m/s)
- t = time (s)
According to this question, a car starts at 12.5 m/s and reaches 25.5 m/s in 5.00 seconds.
a = (25.5 - 12.5)/5
a = 13.0/5
a = 2.6m/s²
Therefore, the acceleration of a car that starts at 12.5 m/s and reaches 25.5 m/s in 5.00 seconds is 2.6m/s².
Learn more about acceleration at: brainly.com/question/12550364
#SPJ1
solution:
Using Cartesian co-ordinate system
Final velocity =v= -4m/s
Initial velocity = u
Acceleration a = m/s²
Time (t).= 60s
By the first kinematical equation
V= u +at
U = v – at
=(-4)-(-3)(60)
176m/s
So, initial velocity was 176m/s
The force is proportional to the product of the charges. So if either one increases, the force between them increases.
Answer:
Explanation:
Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. ... Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator