Evaluate A² for A = -3.
(-3)² = (-3) * (-3) = 9
Your answer is 9.
If the question is, however, evaluate A2, which is 2A, for A = -3, then the answer is:
2A = 2(-3) = -6.
Answer:
Lets say that P(n) is true if n is a prime or a product of prime numbers. We want to show that P(n) is true for all n > 1.
The base case is n=2. P(2) is true because 2 is prime.
Now lets use the inductive hypothesis. Lets take a number n > 2, and we will assume that P(k) is true for any integer k such that 1 < k < n. We want to show that P(n) is true. We may assume that n is not prime, otherwise, P(n) would be trivially true. Since n is not prime, there exist positive integers a,b greater than 1 such that a*b = n. Note that 1 < a < n and 1 < b < n, thus P(a) and P(b) are true. Therefore there exists primes p1, ...., pj and pj+1, ..., pl such that
p1*p2*...*pj = a
pj+1*pj+2*...*pl = b
As a result
n = a*b = (p1*......*pj)*(pj+1*....*pl) = p1*....*pj*....pl
Since we could write n as a product of primes, then P(n) is also true. For strong induction, we conclude than P(n) is true for all integers greater than 1.
Using the fundamental counting theorem, we have that:
- 648 different area codes are possible with this rule.
- There are 6,480,000,000 possible 10-digit phone numbers.
- The amount of possible phone numbers is greater than 400,000,000, thus, there are enough possible phone numbers.
The fundamental counting principle states that if there are p ways to do a thing, and q ways to do another thing, and these two things are independent, there are ways to do both things.
For the area code:
- 8 options for the first digit.
- 9 options for the second and third.
Thus:

648 different area codes are possible with this rule.
For the number of 10-digit phone numbers:
- 7 digits, each with 10 options.
- 648 different area codes.
Then

There are 6,480,000,000 possible 10-digit phone numbers.
The amount of possible phone numbers is greater than 400,000,000, thus, there are enough possible phone numbers.
A similar problem is given at brainly.com/question/24067651
Answer:
You must survey 784 air passengers.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
Assume that nothing is known about the percentage of passengers who prefer aisle seats.
This means that
, which is when the largest sample size will be needed.
Within 3.5 percentage points of the true population percentage.
We have to find n for which M = 0.035. So






You must survey 784 air passengers.