Answer:
Explanation:
Well use the combines gas law to evaluate this question;
P₁V₁/T₁ = P₂V₂/T₂ (Remember that at sea level the pressure is usually 1 atm)
1 * V₁ / 294.25 = 0.72 * V₂ / 277.95 (NB: Temperatures have to be in Kelvin)
V₁ / 294.25 * 277.95 = 0.72 V₂
0.945 V₁ = 0.72 V₂
0.945/0.72 V₁ = V₂
1.312 V₁ = V₂
The volume (V2) at 3000 m altitude will be <u>1.312 </u>bigger than the initial volume at sea level.
Answer:
2MnO4^- (aq) + 3C2O4^2- (aq) + 2H2O (l) --> 2MnO2(s) +6CO3^2 -(aq) + 4H^+ (aq)
Explanation:
First, write the half equations for the reduction of MnO4^- and the oxidation of C2O4^2- respectively. Balance it.
Reduction requires H+ ions and e- and gives out water, vice versa for oxidation.
Reduction:
MnO4^- (aq) + 4H^+ (aq) + 3e- ---> MnO2(s) + 2H2O (l)
Oxidation:
C2O4^2- (aq) + 2H2O (l) ---> 2CO3^2 -(aq) + 4H^+ (aq) + 2e-
Balance the no. of electrons on both equations so that electrons can be eliminated. we can do so by multiplying the reduction eq by 2, and oxidation eq by 3.
2MnO4^- (aq) + 8H^+ (aq) + 6e- ---> 2MnO2(s) + 4H2O (l)
3C2O4^2- (aq) + 6H2O (l) ---> 6CO3^2 -(aq) + 12H^+ (aq) + 6e-
Now combine both equations and eliminate repeating H+ and H2O.
2MnO4^- (aq) + 8H^+ (aq) + 3C2O4^2- (aq) + 6H2O (l) --> 2MnO2(s) + 4H2O (l) +6CO3^2 -(aq) + 12H^+ (aq)
turns into:
2MnO4^- (aq) + 3C2O4^2- (aq) + 2H2O (l) --> 2MnO2(s) +6CO3^2 -(aq) + 4H^+ (aq)
The correct answer is false. <span>Chemical equations are balanced not by changing the subscripts of the molecules instead by changing the coefficients of each molecule. However, the subscripts are helpful in balancing equations because they are used in counting the number of atoms or molecules.</span>
Answer:
Calcium is then pumped back into the sarcoplasmic reticulum breaking the link between actin and myosin.
Explanation:
Actin and myosin return to their unbound state causing the muscle to relax. Alternatively relaxation (failure) will also occur when ATP is no longer available.